.

o s -
. ,%&ﬂ,mg@% - -
-

-

e

5

. - . .
. .. .
o . . }»’Wr%@"”/&(&‘jﬁyﬂg . .
- -
-
.
..

.
e

o

-

.
. .

.-
..

.

.

.

- >
Con
-
-

. - .
.
=

§»

.

.
N

o
.

.

e . = o
= . . -
* -

L
e

. -
.
- e e

. .

. . . .
- e - ... = .

.

o0
o

0
2)

= - .
- - - -

.
.
.

.

c .
- .
7 e -
o -
. . ”*M:N%W%wwwﬁgﬁ .
. .

o o .
= . -
. >-
= - = e -
-
-
o -
. .

-
- . e
... - . . -

- - . .

... . . -

'5 - 'Wﬂ*/‘iﬁwf - ””":,i(,;,z

. .

.
- -

- - .
- . =
e e e
- - . . o . - o 5
... . . v .. _ _ _ _ _ _ _ @ @ @ @@
Q _ .

.. ... _
- ... @ -
o -
- o a%,,}&%@w -

- - - ﬁ{@”fw

.
- .
- - . -
... -
. . . .- . - .
- -
. .. .
- - - . - -
o .

- v -
- - -
.
- . o
. . - _
- = ... - -
. ... -
o

-
= - .
= . o =
.- . .
e - - e s
. - ...
. . .
— o . . o
... _ - . .
- . . - .y

. ' r _ (
o . - -
" - = =

/
- - . ’
.- .

-
.

- = - -
- , ; - -
- - = . - - .
e - . . - - = -
- e - - - . - - o W%/”
. - - - -
”” .- - .

.
.. - ' -

SPECTRAVIDEO BASIC REFERENCE MANUAL

Information in this document 1is subject to change
without notice and does not represent a commitment on
the part of Microsoft, Inc. The software described in
the document is furnished under a license agreement or
non-disclosure agreement. The software may be used or
copied only in accordance with the terms of the
agreement. It is against the law to copy Microsoft
BASIC on cassette tape, disk, or any other medium for
any purpose other than the purchaser's personal use.

BASIC by MICROSOFT

Published by
SPECTRAVIDEO INTERNATIONAL LIMITED

Second Edition
First Printing 1984
Printed in Hong Kong

Copyright (C) 1984 Spectravideo International Limited.
All rights reserved.

Spectravideo International Limited shall not be liable
for technical or editorial omissions made herein; nor
for incidental or consequential damages resulting from
the furnishing, performance or use of this manual.

This book contains proprietary information protected
by copyright. All rights reserved. No part of this
book may be reproduced or utilized in any form or by
any means, electronic or mechanical, including
photocopying, recording or by any information storage
or retrieval system without permission in writing from
Spectravideo International Limited.

Printed in Hong Kong

Price: US$19.95
SVI-318/328-BRM

UCTI

This manual assumes the reader has some knowledge
of the programming language, BASIC. It 1is
recommended that the reader has BASIC up and
running as this manual is read through, to try
out those commands and programs given as
examples.

Chapter 1 explains the various versions of BASIC.

Chapter 2 describes the essential knowledge to
start running BASIC: means of starting different
versions of BASIC, modes of operation and
functions of all keys on keyboard.

Chapter 3 is the threshold of programming. It
starts with definitions of terms and error
messages in programming, arithmetic and

relational operation, to various input/output.

Chapter 4 is the heart of this manual, it
explains and provides example for every
individual command, statement or function.

The appendix hold those handy information need to
be referred to occasionally. In particular,
Appendix B on Disk BASIC is essential to
programming.

To familiarize with SV BASIC and some fundamental

techniques, read through the first three
chapters, before going to Chapter 4 and Appendix.

ii

FORMAT NOTATIO

Whenever the format of a statement or command is
given, the following rules apply:

1.
2.

10.

Items in capital must be input as shown.
Items in lower case letters enclosed in
bracket (£ >) are to be supplied by the
user.

Items in square brackets ([]) are optional.
All punctuation except angle brackets and
square brackets (i.e., commas, parentheses,
semicolons, hypens, equal signs) must be
included where shown.

Items followed by an ellipse (...) may be
repeated any number of times (up to the
length of line).

"string' means a string expression.

"exp'" means a numeric expression, either
constant or variable.

"n" means an integer.

"X, y" denotes X, Y co-ordinate of the
screen.

"A" means ‘CTRL Ikey.

Whenever an example to be tried, the following
rules apply:

1.

Statement or command in black bold letter are
typed in through the computer's keyboard.

Characters or '"Ok'" prompt in blue are
computer's response to your command.

Special key enclosed in a box should be
pressed after input from keyboard.

iii

NN P
e o o .
N =

.
[ue

.
.
N

.
N =

NRODRNRPODNNNNONNMNRNONNDNDNDN
. e o o o .
WWWWWWWWNNNRFE

. . .

N o PN

w

WwWwWwwwwww
NN PO

[y

WWwwWwww W
© 0 ®®a
HowN

—_

iv

Introduction

Format notation

Table of content

Version of BASIC

Cassette BASIC

Disk BASIC

Getting started

To start different versions of
BASIC

To start cassette BASIC

To start Disk BASIC

Modes of operation

Direct mode

Indirect mode

Keyboard

Function key

Typewriter key

Program control key

Editing key

Special key

Arrow key

Joystick cursor control pad
and numeric keypad

General information about
BASIC programming
Introduction

What is programming

Line format

Character set

Reserved word

Constant

Variable

Variable name and declaration
character

Array variable

Space requirement

Type conversion

Single and double precision
Expression and operator
Arithmetic operator

19

19
20
20
21
23
25
28
28

30
31
32
27
34
34

3.9.1.1 Integer division and 35
modulus arithmetic

3.9.1.2 Overflow and division by zero 36
3.9.2 Relational operator 36
3.9.3 Logical operator 38
3.9.4 Functional operator 40
3.9.5 String operation 41
3.10 Program editing 42
3.10.1 Writing program 43
3.10.2 Editing program 44
3.10.3 Full screen editor 45
3.11 Special key 50
3.11.1 Function key 50
3.11.2 Stop key 50
3.12 Error messages 51
3.13 Input and output 51
3.13.1 Data files 51
3.13.1.1 File number 52
3.13.1.2 Naming file 52
3.13.1.2.1 Device name 53
3.13.1.2.2 Filename 53
3.13.2 Screen 54
3.13.2.1 Text mode 55
3.13.2.2 Graphics mode 57
3.13.3 Input/Output 57
3.13.3.1 Sound and music 57
3.13.3.2 Joystick 58
4, BASIC commands, statements and 59
functions
4.1 Commands, statements and 59
functions except I/0
4.1.1 Commands except I/0 59
4,1.2 Functions, except I/0 129
4.2 Device specific statements 173
and functions
4.2.1 Statements 173
4.2.2 Functions 262
4.2.3 Special Variables 273
4.2.4 Mahcine dependent statements 278

and functions

vi

Appendix
Appendix
Appendix

Appendix
Appendix

Appendix
Appendix

Appendix
Appendix

[o5]

Error message
Disk BASIC
Converting programs
to Spectravideo
personal computer
BASIC
Mathematical
Functions

ASCII character
code

Conversion table
Technical
information
Glossary

Index

281
287
321

323

325

331
333

339
361

VERSION OF BASIC

Cassette BASIC

The cassette version of BASIC is
built into your SVI computer in 32K
bytes of read-only memory. You can
use cassette BASIC on a SVI computer
with any amount of random access
memory. The amount of storage you
can use for programs and data depends
on how much random-access memory you
have in your computer.

The only storage device you can use
to save information in Cassette
BASIC is a cassette tape recorder.

Both Cassette and Disk versions of
BASIC possess the following
features:

An extended character set of 102
different characters which can

be displayed. 1In addition to the
conventional alphabets, numbers,
punctuations, you will also find
symbols which are commonly used in
scientific and mathematical
applications.

Graphics capability. With the
installed Video Display Processor
TMS9918/9929 you can draw points,
lines, ellipses and even entire
pictures. There are 52 graphic

1.2

symbols initiated by pressing either
LEFT GRPH or RIGHT GRPH with the 26
alphebet keys simultaneously. 32
sprites — wuser programmable
pictorial shapes - are available.
Screens in high or low resolution are
points addressable.

Audio capability. With the installed
Sound Programmable Generator AY8910,
some sound or piece of music can be
produced.

Special input/output devices. BASIC
supports joysticks, paddles and
graphic tablet which make your
program more interesting and funny.

Disk BASIC

This version of BASIC comes as a
program on the Disk BASIC diskette.
You must load Disk BASIC into memory
before you can use it. It requires
8008 bytes to boot the diskette.

The amount of storage you can use for
programs and data is displayed on the
screen when you start BASIC.

Features of Disk BASIC are:

to cassette.

* Other features for Cassette BASIC.

Input/output to diskette in addition

2.1

2.1.1

2.1.2

GETTING STARTED

To Start Different Versions of BASIC
To Start Cassette BASIC

Hook up your TV set or monitor to the
console. Refer to the user's manual
for details. If you wish to get
program from tape or save a program
onto cassette, connect your data
cassette to the computer. This is
simple. Just insert the connector
located on the tail end of the cable
attached to the recorder into the
slot on the back of the computer.

If you have disk drive(s) connected
to the computer, ensure no diskette
is placed in drive 1 or else the
drive door is left open. You will
find the statement 'SV extended BASIC
version 1.0 Copyright 1983 (c) by
Microsoft Corp.'" appear on the top
screen. A list of first five
function keys are displayed.

To Start Disk BASIC

Hook up your expander, floppy disk
controller (if this is not built into
the expander) and disk drive to the
computer. Do not omit the television
set or monitor of course. Refer to
user's manual for expander or disk
drive for details. Turn on the

2.2

television set or monitor and
expander. A few clacking noises

will come from the disk drive.

Before powering on the computer,
insert the Disk BASIC Diskette in
drive 1, with its label facing

up and towards the slot. Move the
lock to the vertical position. A red
indicator labelled "IN USE" will
light up. The statement "SV

extended BASIC version 1.1 Copyright
1983 (c) by Microsoft Corp." followed
by '"Disk version 1.0 by Microsoft
Corp." are displayed.

If you fail to load Disk BASIC, check
whether enough memory is available.
For SVI-318 user, an additional RAM
(Random Access Memory) cartridge
should be installed. 8008 bytes is
required to boot up the diskette.

Whenever failure is encountered,
reboot the system, ie. power off
the console and then power on.

MODES OF OPERATION

Once BASIC is started, the "Ok"
prompt is displayed. This signals
that you may enter your command or
program. Such status is known as
command level. Now you may
communicate with BASIC in either two
modes: direct or indirect mode.

2.2.1

2.2.2

Direct Mode

In this mode, your command will not
preceded by a line number. Your
command is executed immediately. The
followings may be performed in direct
mode: arithmetic calculation,
logical operation, variable
assignment (stored for later usage)
and simple command. However such
instructions are lost right after
execution. For example:

A = 34 | ENTER
Ok
PRINT A | ENTER
34
Ok

Note: Pressingi ENTER lmeans you
have finished your input and

expect a response from the
computer.

Indirect Mode

A program is entered in indirect
mode. Each statement is preceded

by a line number. The line is stored
as part of the program in memory.

The program will only be executed by
entering RUN command. For Example:

10 A = 34

20 PRINT A
RUN | ENTER
34

Ok

2.3

KEYBOARD

Programming is generally done by
sending instructions to the computer
through the keyboard. Both input
instructions and the computer's
responses are visible on the screen,
which is connected to the console.
The computer's keyboard resembles
that of a typewriter. However it
contains additional keys which are
necessary to communicate effectively
with the computer.

The 318 Keyboard

Basically the keyboard can be divided
into five general areas:

* The function key labelled F1
through F10, are on the upper row
of the keyboard.

The "typewriter'" area lies in the
central part. Here you find the
standard keys usually appeared on
a typewriter keyboard.

The program control keys.

The editing keys are located on
the periphery of the keyboard.

Special Keys.
Built-in joystick for SVI-318 or
numeric keypad for SVI-328 on the

right side of console.

2.3.1 Function Key

Look at the top row of keys:

These keys are called function keys
and each one is marked with the
letter "F'". They are a labor-saving
device because they allow you to
instruct the computer to perform a
frequently used function by pressing
only one key instead of having to
type many keys.

The function keys can be used:
* As "soft keys'. You can set each
key to automatically type any
sequence of characters or any
frequently-used commands. You may
use KEY statement to re-assign
these keys.

As program interrupts through use
of ON KEY statement.

Here is a list of each key, the
function it performs and a brief
description of the function. Refer
to chapter 4 for details. Function
keys F1 through F5 are operated by
pressing the appropriate key.
Function keys F6 through F10 are
operated by pressing the key
and holding it down while
simultaneously pressing the
appropriate key.

For Cassette BASIC

Key PRE-DEFINED FUNCTION DESCRIPTION

F1 files | ENTER Display the names of files residing on a
diskette.

F2 load '"1: Load a program from diskette in disk drive
1. The filename should be specified right
after colon.

F3 save "1: Save a program file on diskette which is
inserted in disk drive 1. Filename should
be supplied right after colon.

F5 run | ENTER Execute the program currently resided in
memory .

F6 color 15,4,5 | ENTER Print white characters on a blue background
with a blue border. These colors are the
default as your computer is turned on.

F7 cload Load program from a cassette recorder.

F8 cont | ENTER Continue program execution after the last
executed line.

F9 list. [ENTER Display the last line you are working on.

F10 run | ENTER Similar to F5, except that the screen is

cleared before program execution.

For Disk BASIC

KEY PRE-DEFINED FUNCTION DESCRIPTION

F1 color Change the text, background and border
colors on your TV set /monitor.

F2 auto | ENTER To generate program line numbers

automatically.

F3 goto Execute the program currently resided in
memory from any place (line number).

F&4 list Print all or part of your immediately
preceding program statements on screen.

F5 run | ENTER Execute the program currently resided in
memory.
F6 color 15,4,5 [ENTER Print white characters on a blue

background with a blue border. These
colors are the default when you turn the
computer on.

F7 cload" Load program from a cassette recorder.
Supply filename to be retrieved right after
the quotation mark.

F8 cont | ENTER Continue program execution after the last
executed line.

F9 list. | ENTER Display the last line you are working on.

F10 run [ENTER Similar to F5, except that the screen is

cleared before program execution.

10

2.3.2 Typewriter Key

This portion resembles a standard
typewriter keyboard. It consists of
the followings:

* Uppercase and lowercase alphabets.
The default is lowercase. On
pressing CAPS LOCK with its red
light on, any alphabet printout on
screen is capital type. Release
the lock by pressing it a second
time. The light turns off and now
lowercase alphabet printout is
available. Also the SHIFT key
when pressed simultaneously with
an alphabet key, will generate
capital letter.

% Numerals from O to 9. For SVI-328
computers, an additional set of
numerals is found in the numeric
keypad.

.
b3

Symobls: punctuction, arithmetic
and logical operators.

11

12

CHARACTER

!
@
#
$
%

ACTION

Exclamation point
At sign

Number sign
Dollar sign
Percent

Up arrow or
exponentiation
symbol

Ampersand
Asterisk or
multiplication
symbol

Left parenthesis
Right parenthesis
Underscore

Hyphen or minus
sign

Equal sign or
assignment symbol
Left square
bracket

Right square
bracket

Left bracket
Right bracket
Back slash

Colon

Semi-colon

Single quotation
mark or apostrophe
Comma

Period, decimal
point or full-stop
Less than

Larger than

Slash or division
symbol

Question mark

Spacebar serves two purposes:

(i) Leave a space.

(ii) Act as a special keyboard
input in programming. Refer
to STRIG(O) function for
details.

* SHIFT

* CAPS
LOCK

By holding down this key while
pressing the desired key, the
capital alphabets and uppershift
symbols can be generated.

Similar to a shift lock key, but
provide only capital alphabets. It
cannot generate upper shift
characters on the numeric or
symbolic keys. It toggles

between uppercase/lowercase
alphabets. This key serves also as
a diagnostic check indicator. As
computer is switched on, an
automatic system functional check
is undergone. This is indicated by
the temporary lighting up of this
key. 1If the system is at fault, it
will continue to illuminate. In
such case, turn off all power and
check all connections before
powering on once more.

2.3.3 PROGRAM CONTROL KEY

The following keys are used to
control the operation of computer
programs.

| STOP | Press this key to pause the
computer after you have
instructed it to execute or to
perform a function, which makes it

13

14

IENTERI

[CTRL |

STOP

2.3.4

CLS /HM
COPY

begin working on your program.
Press it the second time to
instruct the computer to resume
working on your program or a
function.

Press this key at the end of each
instruction you type. By pressing
this key you are telling the
computer to enter the instruction
you just typed into its work space.
The ENTER key is not used to
advance the cursor to the next
screen line and therefore should
not be confused with the return key
on a typewriter. In the event that
an instruction contains more
characters than can fit on a single
screen line, the computer will
automatically advance the cursor to
the next screen line.

This tells the computer to stop
what's doing and turn control back
over to you, so that further
instructions can be issued.

EDITING KEY

These keys together with the four
cursor keys are used in screen
editing.

Pressing this key will clear the
screen and move the cursor to the
upper lefthand corner of the
screen. When pressed together with
the key, it will moved the
cursor to the upper lefthand
position (Home) but will not clear
the screen.

INS

PASTE

DEL
CUT

E S C

2.3.5

LEFT
GRPH

RIGHT
GRPH

This key is used when you wish to
insert characters within a
line. Just move the cursor to the
location where you wish to insert,
then press this key and the text
you type will be inserted.

Press this key to delete the

character under the cursor.

This key is often used in software
application programs. Its usual
function is to interrupt the
operation of a program or to
continue operation following an
interrupt.

This key also is not used in BASIC.
It is used in a word processor or
similar application program to
space forward 5 spaces to begin a
paragraph.

This key also is not used in BASIC.
It backs up the cursor one space
and deletes the character
immediately to the left of the
cursor prior to the key press.

SPECIAL KEY

The LEFT GRAPH and the

RIGHT GRAPH keys are used to
select the graphic symbols that
correspond to the keys which are
displayed on the following chart.
If you press the ey
and hold it dwon while
simultaneously pressing one of the
alphabet keys, the graphhic symbol
above and to the left of the
corresponding key on the following
chart will be displayed. The

15

] HE RN

16

(BRI Hid HX

11} HH

ISELECT|

IPRINT I

2.3.6

corresponding symbol on the right
side of ‘the alphabet key can be
displayed by pressing the

[RIGHT GRPH | key and the
corresponding key.

(ke =HEl 1B a4 u 1N oa m} |

1] =*]"} 0] on el Qg

=l 7] e ol A1 =))

The SELECT and PRINT keys are also
included on this keypad to allow
the advantage of using these
functions that are often available
in word processing and data entry
software packages. These keys have
no function in BASIC programming
and are only accessed from programs
such as those mentioned above.

Arrow Key

The arrow keys (up, down, left &
right) control the movement of the
cursor on the display screen. By
pressing a combination of the up and
left arrow keys, you will cause the
cursor to move towards the upper left
corner of the display screen. Other
combinations will work in the same
fashion giving you 8 directions of
cursor movement using these keys.

Cursor left (=) If the cursor
advances beyond the left edge of the
screen, the cursor will move to the
right side of the screen on the
preceding line.

2.3.7

Cursor right (—) If the cursor
advances beyond the right edge of the
screen, the cursor will move to the
left side of the screen on the next
line down.

JOYSTICK CURSOR CONTROL PAD

The special built-in Joystick/Cursor

Control pad feature is unique to the

SVI-318 computer. It manipulates the
cursor movement on the screen.

NUMERIC KEYPAD

17

18

The numeric keys (1-9) are the same
as the keys on the top of the
regular keyboard. These are used
when performing rapid entry of
numeric data. This keypad also
contains the mathematical functions
keys (+,-,%,/) which can be used to
enter formulae and to perform quick
calculations.

PTER 3

GENERAL INFORMATION ABOUT
BASIC PROGRAMMING

INTRODUCTION

To control a computer, one must give
his instructions in a language that
the computer understands. The SVI
computers understand a language
called Microsoft BASIC. BASIC stands
for "Beginner's All Purpose Symbolic
Instruction code'". It is actually a
set of English words with which you
can instruct the computer to perform
certain functions.

Microsoft BASIC is an extended
version to the Microsoft standard
BASIC version 5.3, which includes
supports to graphics, music and
various peripherals attached to home
and personal computer. Generally,
BASIC is designed to follow the GW
BASIC which is a standard BASIC in
the 16-bit machine world. However,
great effort has been put to make the
system as flexible and expandable as
possible.

Also Microsoft BASIC is featured with
up to 14 digits accuracy, double
precision arithmetic function. This
means arithmetic operations no

longer generate strange round errors
that confuse novice users. Every
transcendental functions are also
calculated with this accuracy.

19

20

3.2

3.3

WHAT IS PROGRAMMING?

Programming is the art of writing the
instructions and information for

the computer to read and execute.
Programs differ from one another in
their sets of instructions and
information. Programs written in one
computer language will not contain
instructions and structure that a
program in another computer language
possesses.

There are two different ways to input
a program into the computer: in
program/indirect mode or immediate/
direct mode.

LINE FORMAT

BASIC program lines have the
following format:

{ nnnnn) BASIC statement [:BASIC

statement]['comment] | ENTER

A program line always begins with a
line number nnnnn ranging from O
to 65529. Only integer will be
accepted. Line numbers indicate

the order in which the program lines
are stored in memory. Also they

are referenced in branching and
editing.

A line may contain a maximum of 255
characters. More than one BASIC
statement may be placed on a line,
each being separated from the last by
a colon.

3.4

Comments may be added to the end of a
line using the apostrophe (') to
separate the comment from the rest of
the line.

A program line should end by pressing

ENTER |.
CHARACTER SET
The character set consists of
alphabets, numerals, special

characters and graphic characters.

There are both upper and lower case
letters for each alphabet.

Also there are ten digits, from O to

9.
In addition, the special characters

are shown as the following table.
(See page 22)

21

CHARACTER

ﬁ| @/ NS v s v s e A S S]l

=1
wn
(@]

d

ENTER

ACTION

Equal sign or assignment symbol
Plus sign

Minus sign

Asterisk or multiplication symbol
Slash or division symbol

Up arrow or exponentiation symbol
Left parenthesis

Right parenthesis

Percent

Number sign

Dollar sign

Exclamation point

Left square bracket

Right square bracket

Left bracket

Right bracket

Comma

Period or decimal point

Single quotation mark (apostrophe)
Semicolon

Colon

Ampersand

Question mark

Less than

Greater than

Integer division symbol

At sign

Underscore

Delete last character typed
Escape

Move print position to next tab stop.
Tab stops are set every eight columns.
Terminate input of a line.

22

3.5

RESERVED WORD

BASIC statements and function names

are reserved.

the key

words cannot be used in variable

names. If you attempt to use any of
the words listed below as the name of
the variable, an error is indicated

by the computer.

ABS
AND
APPEND
ASC
ATN
ATTR$
AUTO
BASE
BEEP
BIN$
BLOAD
BSAVE
CALL
CDBL
CHR$
CINT
CIRCLE
CLEAR
CLICK
CLOAD
CLOAD?
CLOSE
CLS
COLOR
CONT
CoSs
CSAVE
CSNG
CSRLIN
CVl
Cvs
DATA
DEFDBL

DEFFN
DEFINT
DEFSNG
DEFSTR
DEFUSR
DELETE
DIM
DRAW
DSKI$
DSKO$
ELSE
END
EOF
EQV
ERASE
ERL
ERR
ERROR
EXP
FIELD
FILES
FIX
FOR
FPOS
FRE
GET
GOSUB
GOTO
HEX$
IF
INKEY$
INP
INPUT

23

24

INPUT#
INPUT$
INSTR

INT
INTERVAL
INTERVAL OFF
INTERVAL ON
INTERVAL STOP
IPL

KEY

KEY LIST
KEY ON

KEY STOP
KEY (n) OFF
KEY (n) ON
KEY (n) STOP
KILL

LEFT$

LEN

LET

LFILES

LINE

LINE INPUT#
LIST

LLIST

LOAD

LOC

LOCATE

LOF

LOG

LPOS

LPRINT
LPRINT USING
LSET
MAXIFILES
MERGE

MID$

MKI$

MKD$

MKS$

MOD

MOTOR ON
MOTOR OFF

NAME
NEW

NEX
NOT

T

OCT$

ON
ON
ON
ON
ON
ON
ON
ON
OPE
OR
ouT

ERROR GOTO
GOSUB

GOTO

INTERVAL GOSUB
KEY GOSUB
SPRITE GOSUB
STOP GOSUB
STRIG GOSUB

N

OUTPUT
PAD

PAI
PEE
PLA
POI
POK
POS

NT
K
Y
NT
E

PRESET

PRI
PRI
PRI
PRI
PSE
PUT
REA
REM
REN

NT
NT USING
NT#
NT# USING
T

SPRITE
D

UM

RESTORE
RESUME
RETURN

RIG
RND
RUN

HT$

SAVE
SCREEN

SET

3.6

SGN
SIN

SOUND
SPACE$

SPC

SPRITE OFF
SPRITE ON
SPRITE STOP
SPRITE$

SQR

STEP

STICK

STOP

STOP ON
STOP OFF
STOP STOP
STRIG

STRIG OFF
STRIG ON
STRIG STOP

CONSTANT

STR$
STRING$
SWAP
SWITCH
SWITCH STOP
TAB
TAN
THEN
TIME
TROFF
TRON
USR
VAL
VARPTR
VPEEK
VPOKE
WAIT
WIDTH
XOR

Constants are the values used during

execution.
constants:

A string constant is a sequence of up

There are two types of
string and numeric.

to 255 alphanumeric characters
enclosed in double quotation marks.

For example:

"$25,000.00"
"HELLO"
"Number of Employees"

Numeric constants are positive or

negative numbers.
contain commas.

They cannot
There are six types:

25

26

Integer

Whole numbers between -32768

and 32767. 1Integer constants do
not contain decimal points.

Fixed-point

Positive or negative real
numbers, i.e., numbers that
contain decimal pcints.

Floating-point

Positive or negative numbers
represented in exponential
form. A floating-point
constant consists of an
optionally signed integer or
fixed-point number (the
mantissa) followed by the
letter E and an optionally
signed integer (the exponent).
The allowable range for
floating-point constant is 10
to 10 .

For example:
235.988E-7 = .0000235988
2359E6 = 2359000000

Double precision floating-point
constants are denoted by the
letter D instead of E.

Hex

Hexadecimal numbers, denoted by
the prefix &H.

For example:

&H32F

3.6.1

5. Octal
Octal numbers, denoted by the
prefix &O.

For example:
&0347

6. Binary
Binary numbers, denoted by the
prefix &B.

For example:
&B11100111
Single And Double Precision

Numeric constants may be either
single precision or double precision
numbers. Single precision numeric
constants are stored with 6 digits of
precision, and printed with up to 6
digits. Double precision numeric
constants are stored with 14 digits
of precision and printed with up to
14 digits. Double precision is the
default mode.

A single precision constant is any
numeric constant that has one of the
following characteristics:

1. Exponential form using E.

2. A trailing exclamatiion point

.

For example:
-1.09E-0622.5!

A double precision constant is any

numeric constant that has one of
these characteristics:

27

28

1. Any digits of number without any
exponential or type specifier.

2. Exponential form using D.
3. A trailing number sign (#).

For example:
3489
345692811
7654321.1234
-1.09432D-06
3489 .0#

VARIABLE

Variables are names used to represent
values used in a BASIGC program. The
value of a variable may be assigned
explicitly by the programmer, or it
may be assigned as the result of
calculations in the program. Before
a value is assigned to a variable, it
is assumed to be zero.

Variable Name and Declaration
Character

BASIC variable names may be of any
length. Only 2 characters are
significant. They can contain
letters and numbers. However, the
first character must be a letter.
Special type declaration
characters are also allowed.

A variable name should not be or
consists of reserved words. Reserved
words include all BASIC commands,
statements, function names and
operator names. If a variable begins
with FN, it is assumed to be a user-
defined function.

Variable may represent either a
numeric value or a string. String
variable names are written with a
dollar sign($) as the last character.
For example:

A$ = '"SALES REPORT"

The dollar sign is a variable type
declaration character. It declares
that the variable will represent a
string.

Numeric variable names may declare
integer, single precision or double
precision values. The type
declaration characters for these
variable names are as follows:

% Integer
variable

! Single precisin
variable

Double precision
variable

The default type for a numeric
variable name is double precision.

Examples of BASIC variable names:

PI# Declare a double
precision value

MINIMUM! Declare a single
precision value

LIMIT% Declare an
integer value

N$ Declare a string
value

ABC Represent a
double precision
value

29

30

3.7.2

Besides, DEFINT, DEFSTR, DEFSNG, and
DEFDBL statements may be included in a
program to declare the types for certain
variable names.

Array Variable

An array is a group or table of
values that are referred to with one
name. Each individual value in the
array is called an element. Array
elements are variables.

An array need to be defined and
dimensioned. Defining means
declaring the name and type of an
array.

Dimensioning means setting the number
of elements and their arrangement in
an array. The maximum number of
dimensions for an array is 255.

For example:

DIM A$(3)

This creates a one-dimensional array
named A$. All its elements are
string variables with an initial
null value. This array consists of
four containers

A$ (0)
A$ (1)
A$ (2)
A$ (3)

This first string in the list is
named A$ (0).

Let's create a two-dimensional array
named B, which consists of single-
precision variables. All elements
are initially set to zero.

DIM B (1,2)

COLUMN

B (0,0) B (0,1) B (0,2)
B (1,0) B (1,1) B (1,2)

ROW

The element in the second row, first
column is called B (1,0)

If an array element is used before

the array is dimensioned, it is set
to a one-dimensional array with 11

elements.

Space Requirement

The following table lists only the
number of bytes occupied by the
values represented by the variable
names.

Variables Type Bytes
Integer 2
Single Precision 4
Double Precision 8

Arrays Type Bytes
Integer 2
Single Precision 4
Double Precision 8

Strings 3 bytes overhead plus the
present contents of the
string.

31

32

3.8

TYPE CONVERSION

A numeric constant can be converted
from one type to another. The
following rules should be kept in
mind.

If a numeric variable of one type
is set equal to a constant of
another type, the number will be
stored as the type declared in
the variable name.

For example:

10 A%=23.42
20 PRINT A%
RUN

23

Ok

Line 10 specifies the variable A
as an integer. It then sets A
to be 23.42. However, the type
declaration of a variable name
takes precedence.

As an expression is evaluated,
its operands are converted to the
same degree of precision.

Always, the most precise form is
chosen. This is the same for
both arithmetic or relational
operation. Also, the result of
an arithmetic operation is
returned in this degree of
precision. For example:

10 D=6/7

20 PRINT D

RUN
.85714285714286
Ok

Calculation was performed in
double precision and the result
was returned as a double
precision value.

10 D!=6/7
20 PRINT D!
RUN

.857143

Ok

Calculation was performed in
double precision and the result
was rounded to a single precision
value.

Logical operators convert their
operands to integers and return
an integer result. Operands must
be in the range -32768 to 32767
or an '"Overflow'" error occurs.

When a floating-point value is
converted to an integer, the
fractional portion is truncated.
For example:

10 C%=55.88
20 PRINT C%
RUN
55
Ok

If a double precision variable is
assigned a single precision
value, only the first six digits
of the converted number will be
valid. This is because only six
digits of accuracy were supplied
with the single precision value.
For example:

33

34

3.9

3.9.1

10 A!=SQR(2)
20 B=A!
30 PRINT A!,B
RUN
1.41421 1.41421
Ok

EXPRESSION AND OPERATOR

An expression may be a string, a
numeric constant, a variable or a
combination of constants and
variables with operators which
produces a single value.

Operators perform mathematical or
logical operations on values. The
BASIC operators may be divided into
four categories:

1. Arithmetic
2. Relational
3. Logical

4

. Functional

Each category is described in the
following sections.

Arithmetic Operator

The arithmetic operators, in order of
precedence, are:

Operator Operation Sample
Expression

A Exponentiation XAY

- Negation -X

¥,/ Multiplication, X*Y
Floating-point X/Y
Division

+,= Addition, X+Y
subtraction X-Y

Use parentheses to change this order
of precedence. Operations lying
within parentheses are performed
first. Inside them, the usual order
of operations is maintained.

3.9.1.1 Integer Division And Modulus Arithmetic

Two additional operators are
available in BASIC:

Integer division is denoted by the
"\'" symbol. Operands are truncated
to integers in the range -32768

to 32767 before division is
performed, and the quotient is
truncated to an integer. For
example:

PRINT 10 \ 4

2

Ok

PRINT 25.68 \ 6.99
4

Ok

Integer division follows
multiplication and floating-point
division in order of precedence.

35

36

3.9.1.2

3.9.2

Modulus arithmetic MOD yields the
integer value of the remainder of an
integer division. For example:

PRINT 10.4 MOD & 10/4=2 has a
2 remainder 2

Ok

PRINT 25.68 MOD 6.991 25/6=4 has a
1 remainder 1

Ok

Modulus arithmetic follows integer
division in order of precedence.

Overflow and Division By Zero

As an expression is evaluated, if any
value lying beyond the range -32768
to 32767 is encountered, the error
message '"Overflow" will be displayed.
Execution will also be terminated.

If division by zero is encountered,
the '"Division by zero'" error message
will be displayed. Likewise,
program execution is stopped.

Relational Operator

Relational operators are used to
compare two values. The result of
the comparison is either "true" (-1)
or "false" (0). This

result may then be used to make a
decision regarding program flow.
(See description for "IF"
statements.)

The relational operators are:

Operator | Relation Tested|Example

= Equality X=Y
<>Dor< D> | Inequality X<>Y

< Less than X <Y

> Greater than X>Y

<= or = <| Less than or
equal to X<=Y

>= or => | Greater than
or equal to X>=Y

The equal sign is also used to assign
a value to a variable.

When arithmetic and relational
operators are combined in one
expression, the arithmetic is always
performed first. For example, the
expression

X+Y <(T-1)/2
is true if the value of X plus Y is
less than the value of T-1 divided by
Z.

More examples:

IF SIN(X) <0 GOTO 1000
IF T MOD J< >0 THEN K=K+1

37

38

3.9.3

Table 3.1

Logical Operator

Logical operators perform tests on
multiple relations, bit manipulation
or Boolean operations. The logical
operator returns a bitwise result
which is either true (not zero) or
flase (zero). 1In an expression,
logital operations are performed
after arithmetic and relational
operations. The outcome of a logical
operation is determined as shown in
Table 1. The operators are listed in
order of precedence.

BASIC Logical Operators Truth Table

NOT

o - X
=4
Q
~on
=<

AND X AND Y

PR]
orRrOr K
coo

OR

SO P X
oOr OoOrK
OrR m =X

XOR X XOR Y

O O X
OO
O = = O

EQV X EQV Y

1

OO rr X
oOr OoOr

o
0
1

IMP X IMP Y

1

O OoOr X
O O

0
1
1

Logical operators can connect two or
more relations and return a true or
false value to be used in a decision.

Example:

IF D > 200 AND F > 4 THEN
80

IF I> 10 OR K > O THEN 50
IF NOT (P = -1) THEN 100

Logical operators convert their
operands to 8-bit, signed, two's
complement integers in the range
-32768 to 32767. The given
operation is performed on these
integers in bitwise fashion. Each
bit of the result is determined by
the corresponding bits in the two
operands.

Thus, it is possible to use logical
operators to test bytes for a
particular bit pattern. For
instance, the AND operator may be
used to '"mask'" all but one of the
bits of a status byte at a machine
I/0 port. The OR operator may be
used to '"merge' two bytes to create a
particular binary value. The
following example will help
demonstrate how the logical operators
work.

39

40

3.9.4

63 AND 16 = 16 63 0011 1111
16 0001 0000

63 AND 16 0001 0000

15 AND 14 = 14 15 0000 1111
14 0000 1110

15 AND 14 0000 1110

-1 AND 8 = 8 -1 1111 1111
8 0000 1000

-1 AND 8 0000 1000

4 0R 2 =6 4 0000 0100
2 0000 0010

4 OR 2 0000 0110

10 OR 10 = 10 10 0000 1010
10 0000 1010

10 OR 10 0000 1010

-1 OR -2 = -1 -1 1111 1111
-2 1111 1110

-1 OR -2 1111 1111
TWOSCOMP = The two's complement of
(NOTX) + 1 any integer is the bit

complement plus one.

Functional Operator

A function is used in an expression
to call a predetermined operation
that is to be performed on an
operand. BASIC has intrinsic
functions that reside in the system,
such as SQR (square root) or SIN
(sine).

BASIC also allows user-defined
functions that are written by the
programmer. See descriptions for DEF
FN.

3.9.5

String Operation

Strings may be concatenated by using
”+”.

Example:

10 A$="FILE" : B$=""NAME"
20 PRINT A$+B$

30 PRINT '"NEW "+A$+B$

RUN

FILENAME

NEW FILENAME

Ok

Strings may be compared using the
same relational operators that are
used with numbers:

= Equality

<{ Dor< > Inequality
< Less than

> Greater than

< = or = < Less than or equal to
> = or = » Greater than or equal to

String comparisons are made by taking
one character at a time from each
string and comparing the ASCII codes.
If all the ASCII codes are the same,
the strings are equal. Otherwise the
precedence is determined according to
ASCII codes. 1If during string
comparison the end of one string is
reached, the shorter string is said
to be smaller. Leading and trailing
blanks are significant.

41

42

3.10

Examples:

"AA"< "AB"
"FILENAME'="FILENAME"
IIX&II> IIX#II

"CcL ">”CL”

"Kg"< "nKgG"

"SMYTH" < ''SMYTHE"

B$ <"9/12/83"

where B$="8/12/83"

String comparisons can be used to
test string values or to alphabetize
strings. All string constants used
in comparison expressions must be
enclosed in quotation marks.

PROGRAM EDITING

The Full Screen Editor equipped with
BASIC allows the user to enter
program lines as usual, then edit an
entire screen before recording the
changes. This time-saving capability
is made possible by special keys

for cursor movement, character
insertion and deletion, and line or
screen erasure. Specific functions
and key assignments are discussed in
the following sections.

With the Full Screen Editor, a user
can move quickly around the screen,
making corrections where necessary.
The changes are entered by placing
the cursor on the first logical line
changed and pressing at the
beginning of each line. A program
line is not actually changed unless

‘ENTER‘ is pressed from somewhere

within the logical line.

3.10.1

Writing Program

Within BASIC, the editor is in
control any time after an '"Ok" prompt
and before a RUN command is issued.
Any line of text that is entered is
processed by the editor. Any line of
text that begins with a number is
considered as a program statement.

Program statements are processed by
the editor in one of the following
ways:

1. A new line is added to the
program. This occurs if the
line number is valid (O
through 65529) and at least one
non-blank character follows the
line number.

2. An existing line is modified.
This occurs if the line number
matches that of an existing line
in the program. The existing
line is replaced with the text of
the new line.

3. An existing line is deleted.
This occurs if the line number
matches that of an existing line,
and the new line contains only
the line number.

4. An error is produced.

If an attempt is made to delete a
non-existent line, an "Undefined line
number'" error message is displayed.

If program memory is exhausted and a
line is added to the program, an
"Out of memory" error is displayed
and the line is not added.

43

44

3.10.2

More than one statement may be placed
on a line. 1If this is done, the
statements must be separated by a
colon (:). The colon need not be
surrounded by spaces.

The maximum number of characters
allowed in a program line, including
the line number, is 255,

Editing Program

Use the LIST statement to display an
entire program or range of lines on
the screen so that they can be
edited. Text can then be modified by
moving the cursor to the place where
the change is needed and perform one
of the following actions:

1. Typing over existing characters

2. Deleting characters to the right
of the cursor

3. Deleting characters to the left
of the cursor

4, Inserting characters

5. Appending characters to the end
of the logical line

These actions are performed by
special keys assigned to the various
Full Screen Editor functions (see
next section).

Changes to a line are recorded when
is pressed while the cursor
is somewhere on the line. All
changes for that logical line are

entered, no matter how many physical
lines are included.

3.10.3

Full Screen Editor

The following table lists the
hexadecimal codes for the BASIC
control characters and summarizes
their functions. The Control-key
sequence normally assigned to each
function is also listed. These
conform as closely as possible to
ASCII standard conversions.

Individual control functions are
described in the following the table.

45

*(paddean) dn panow ade aulf [eITHOT Judddnd ay3
UTY3TM SBUTT pue SJd3ldeJeYd Juanbasqng -uotjisod auo
3497 Panow aJe Josund ay3 jo 3ybtu ayz o3 suajoeudeyd

Jano

TI¥ "JOSJ4Nd ayj jo 343] 9yl 03 Jajoedeyd ayj 33afaQ passed sdajoedeyd butiayap ‘soedsyoeg > H 80
“punos daag ay3 aonpody daag))

"6—0Q JO Z-B ‘7-y S38S 8yj Ul JOSJNI
9y3 jo 3ybtu sy3 03 Js3dBUBYD 3X3U Y3} ST PJOM 3X3N PJOM 3X3U 40 JJB3S 03 JOSJND 3A0Y 4 90

©au1l 8yj o3 papuadde sue uotjisod Josdnd

Mau ay3 wouy padAy sdajoedey) -Jano passed suajoedeyd (8uty Teo1b0OT

8y} 93a[ag -ouUIT TeI16OT Jo pua 03 J0oSJNd anoy 40 pud 03 3X33 JEI[D) AUTT 23BOUNJ| 3 S0
paJoubl a %0

spajips butaq A7jusuund BuTT 8y3 03 SpeW dJaM jBYY
sabueyod butaes 3noyztm ‘spouw 329J4Ip JISYg 03 uJdniay 3ndut Joj butitemM ST JISyg usaym yeadg 3 €0

"6-0 J0 Z-B ‘7-y S38S aYj UT JOSJND BY3 JO 333

9Yyj 03 JajoBJBYD 3X3U dYj SB PAUTJap ST pJoM snotaadd
sy} -pdJom snotaadd ayj 03 333l PaAoWw ST JOSJNI ay| pJom snotAsdd JO 3JB3S 03 JOSUND 3AOK] 20
padJoubg) 10
Kay Kay apo)
jyJemay uot3ouny Te1dadg 1043u0) X3H

-Kay podjuo) ayy umop buipyoy ayiym A3y ay3 buissaud Aq padajus
ST A3y [043u0d JIJSY 3yl "suorduny [oJjuo) JISVE AS ¢°E A[9eL

46

LY

08

0A

0B

0c

00

0E

OF

10

12

13

CLS/HM

CLS

ENTER

INS

Tab (moves to next TAB stop)

Line feed

Move cursor to home position

Clear screen

Enter (enter current logical
line)

Append to end of line

Ignored
Ignored
Ignored

Toggle insert/typeover mode

Ignored

Move cursor to the next tab stop, overwriting blanks.
Tab stops occur every 8 characters.

Move cursor to the upper left corner of the screen.
The screen is not blanked.

Move cursor to home position and clear the entire
screen, regardless of where the cursor is positioned
when the key is entered.

End the logical line and return to BASIC.

Move cursor to end of line, without deleting the
characters passed over. All characters typed from the
new position until an ENTER are appended to the
logical line.

Toggle switch for insert mode. When insert mode is on,
the size of the cursor is reduced and characters are
inserted at the current cursor position. Characters to
the right of the cursor move right as new ones are
inserted. Line wrap is observed.

- (uot3rsod
JuaJund ay3 3e) aurl TedtsAyd auo umMop JoSJUND By} BAOK

*(uot3tsod
Juaddnd ay3 3e) auty [eotsAyd auo dn Josuno ay3 anoy

*paAJasqo ST
dedm auTy °349] 9Yy3 03 UOT3TSOd BUO JOSUND AAOY

*panJasqo ST
dedm aut] -3ybTJ 9Yy3 03 UOT3TSOd JUO JOSJNI FAOY

*paseJa ST aut] Testboy
9JTJUd 9y} ‘QUTT 9y3 uT aJaymAue pauajus ST A3y ay3 uayy

JOSJnd je Jajdedeyd

umop

dn

3491

3yba

auty Teotbo

9391a(Q

Josan)

Josan)

J0sdng

Josang
padJouby
padJouby
padouby
padJouby
padJoubr
padJouby
1 Jee1)

padJoubr

130

1937138

130

i

41

ElS

at

a1

81

v

61

81

L1

91

ST

kAt

48

Normally, a logical line consists of
all the characters on its physical
lines. During execution of an INPUT
or LINE INPUT statement, however,
this definition is modified slightly
to allow for forms input. The
logical line is restricted to
characters actually typed or passed
over by the cursor. Insert mode and
delete function only move characters
within a logical line.

Insert mode increments the logical
line except when the characters moved
will write over non-blank characters
that are on the same physical line
but not part of the logical line.

In this case, the non-blank
characters not being part of the
logical line are preserved and the
characters at end of the logical line
are thrown out. This preserves
labels that existed prior to the
INPUT statement. If an incorrect
character is entered as a line is
being typed, it can be deleted with
the Back Space key (<33) or with
Control-U. This simply backspaces
over a character and erases it.

Once a character has been deleted,
simply continue typing the line as
desired.

To delete a line that is in the
process of being typed, typed
Control-H.

To correct program lines for a
program that is currently in memory,
simply retype the line using the same
line number. BASIC will
automatically replace the old line
with the new line.

49

50

3.11

3.11.1

3.11.2

To delete the entire program
currently residing in memory, enter
the NEW command. NEW is usually used
to clear memory prior to entering a
new program.

SPECIAL KEY

BASIC supports several special keys
as follows.

Function Key

BASIC has 10 pre-defined function
keys. The current contents of these
keys are displayed on the last line
on the screen and can be redefined by
program with KEY statement. The
initial values are:

F1 color

F2 auto[10,10][ENTER]
F3 goto

F4 list

F5 run

F6 color 15,4,5[ENTER|
F7 cload"

F8 cont

F9 list.

F10 [CLS Jrun[ENTER]

Function keys are also used as event
trap keys. See ON KEY GOSUB and KEY
ON/OFF/STOP statement for details.

Stop Key
When BASIC is in command mode, the

STOP key has no effect to the
operation.

3.13

3.13.1

When BASIC is executing the program,
pressing the STOP key causes
suspension of the program execution.
BASIC turns on cursor display to
indicate that the execution is
suspended. Another STOP key input
resumes the execution. If the STOP
key and control key are pressed
simultaneously, BASIC terminates

the execution and return to command
mode with the following message.

Break in<nnnnnd

where<nnnnndis the program line
number where the execution stopped.

ERROR MESSAGES

If an error causes program execution
to terminate, an error message is
printed. For a complete list of
BASIC error codes and error messages,
see Appendix A.

INPUT AND OUTPUT

DATA FILES

A file is a collection of
information, kept somewhere other
than in the random access memory.
This may be tape or diskette.

There are two categories of data
files, namely, sequential and
random access file.

In order to keep such file orderly,

two criteria should be specified:
file number and filename.

51

52

3.13.1.1

3.13.1.2

File Number

Filenumber is what the computer uses
to refer to the file. It is a unique
number that is associated with the
physical file that is opened. This
identifies the route that the
computer uses to send and receive
information from the specific device.

Naming File

The physical file is specified by its
file specification, which is a string
expression of the form:

device: filename

The device name tells BASIC where to
seek for the file and the filename
tells BASIC which file to look for on
that device. Sometimes it is not
necessary to specify these items.
Take for example, you want to
retrieve the first file from the
cassette, both file number and
filename may be omitted.

The colon (:) is part of the device
name. Whenever a device is stated,
you must include the colon, even if
the filename is not given.

Remember to enclose the file
specification with a pair of

quotation marks. For example:

LOAD " device : filename "

3.13.1.2.1

3.13.1.2.2

Device Name

A maximum of four characters can be
used, including the colon (:).

KYBD: Keyboard. Input only. For
cassette and disk BASIC.

CRT : Screen. Output only. For
cassette and disk BASIC.

LPT : Printer. Output only, For
cassette and disk BASIC.

CAS : Cassette tape player. As a
storage device. Input and
output. For cassette and disk

BASIC.

1 : First disk drive. Input and
output. For cassette and disk
BASIC.

2 : Second disk drive. Input and
output. For cassette and disk
BASIC.

Filename:

The filename must conform to the
following rules.

For cassette files: The name is
restricted to a length of six
characters.

For disk files: The name may consist
of two parts seperated by a period

()

name. extension

The maximum number of characters for
name is six and that for extension is

53

54

3.13.2

three. Extra character will be
truncated.

If a decimal point appears in a
filename after fewer than six
characters, the name is blank filled
to the sixth character, and the next
three characters are the extension.
If the filename has more than six
characters, BASIC automatically
inserts a decimal point after the
sixth character and uses the next
three as an extension. Extra is
ignored.

SCREEN

The TMS9918/9929 Video Display
Processor supports the text and
graphic display on the screen such as
text, special characters, points,
lines or more complex shapes in color
or in black and white.

Text refers to alphabets, numbers and
all the special characters in the
regular character set.

Enjoy also your computer's capability
in drawing pictures with the special
line and box characters. Do not miss
out the ingenious SPRITE. You may
also create blinking, reverse,
invisible and highlighted image with
the help of BASIC commands. In both
high and low resolution screen, all
points are addressable. The screen
can be divided into three layers, one
lying on top of the other. Starting
from the bottom, they are the border,
the background and the foreground.

3.13.2.1

A total of sixteen colors can be
displayed. Each one is characterised
by a number.

COLOR # COLOR
0 Transparent
1 Black
2 Medium Green
3 Light Green
4 Dark Blue
5 Light Blue
6 Dark Red
7 Cyan
8 Medium Red
9 Light Red
10 Dark Yellow
11 Light Yellow
12 Dark Green
13 Magenta
14 Gray
15 White

The colors may vary depending on your
display device. Adjusting the color
tuning may help set the colors to
match this chart better.

Text Mode

This is the default mode as the
display screen is first turned on.
Or else set by the command (SCREEN
0). Here you can communicate with
the computer through keyboard input.

In this mode, the background covers
the border totally. The foreground
carries all the images that appear on
the screen, ie. the text.

Characters are shown in 24 horizontal
lines across the screen, numbered 1

55

56

through 24, from top to bottom. Each
line has 39, 40 or 80 characters.

The default is 39 without 80 column
cartridge; or 80 if the latter is
installed. With the command WIDTH
40, a maximum of 40 characters can be
displayed. The numbering starts at 1
from left to right. The position
numbers are used in the following
commands or functions:

LOCATE POS CSRLIN

The top left corner of the screen has
the coordinate of (1,1). Use PRINT
statement to place any desired
characters on the screen. The
character is displayed at the
position of the cursor. If you
command a string of characters to be
PRINTed, they will be printed from
left to right on a line. When the
cursor will normally go to the 24th
line, lines 1 through 23 are scrolled
up one line, so that what was line 1
disappears from the screen. Line 24
is then blanked, and the cursor
remains on line 23 to continue
printing.

Line 24 is usually used to display
the current function keys. It is
however possible to write over
this line.

The useful commands or functions you
can use to display information in
text mode are:

CLS POS TAB
COLOR PRINT WIDTH
CSRLIN SCREEN WRITE
LOCATE SPC

3.13.2.2 Graphics Mode

There are two graphic resolution
available. Here are the useful
commands or functions to generate an
impressive picture:

CIRCLE LINE PSET
COLOR PAINT PUT
DRAW POINT SCREEN
GET PRESET

High Resolution

This is set by the command SCREEN 1.
There are 256 horizontal points (or
pixels) and 192 vertical points.
These points are numbered from left
to right and from top to bottom. The
top left corner has the coordinate
(0,0). Text characters can be
displayed in this graphic mode. The
size of character is the same as

in the text mode.

Low Resolution

This is set by the command SCREEN 2.
There are 64 horizontal points and 48
vertical points. The numbering is
similar as the high resolution mode.

INPUT/OUTPUT

Any type of input/output may be
treated like I/O to a file.

57

58

3.13.3.1

3.13.3.2

Sound and Music

You can use the followings to create
sound on the computer.

BEEP Beep the speaker.

SOUND Make a single sound of
desired frequency and
duration.

PLAY Play music as indicated by a
character string.

Joystick

Joystick is useful in an interactive
environment. BASIC supports joystick
and graphic tablet. Refer to the
following commands or functions for
details:

PAD STICK STRIG

4.1

4.1.1
4.1.1.1

Purpose

Version

Format

Femarks

BASIC COMMANDS, STATEMENTS
AND FUNCTIONS

COMMANDS, STATEMENTS AND FUNCTIONS
EXPECT I1/0

Commands except I/0
AUTO

To generate a line number
automatically after pressing ENTER.

Cassette, Disk

AUTO [line number
[, increment 1]

AUTO begins numbering at line number
and increments each subsequent line
number by increment, The
default for both value is 10. If

line number is followed by a
comma but increment is not
specified, the last increment
specified in an AUTO command is
assumed.

If AUTO generates a line number that
is already being used, an asterisk
is printed after the line number to
warn the user that any input will
replace the existing line. However,
typing an ENTER immediately after
the asterisk will save the line

and generate the next line number.

59

AUTO is terminated by typing CTRL-C
or CTRL-STOP. The line in which
CTRL-C is typed is not saved.

After CTRL-C is typed, BASIC returns
to command level.

Example : AUTO
Generate line numbers 10, 20, 30,....

AUTO 20, 5
Generate line numbers 20, 25, 30,....

AUTO 100,
Generate line numbers 100,105,110,....
The increment is 5 since the previous
AUTO command has specified the
increment to be 5.

AUTO, 3
Generate line numbers 0,3,6,....

60

4.1.1.2

FPurpose

Version

Format

Remarks

Example

CLEAR

To set all numeric variables to
zero, all string variables to null,
close all open files end optionally,
to set the end of memory.

Cassette, Disk

CLEAR [string space [,
highest location]]

string space specifies the
space for string variables. This is
useful to reserve space in storage
for machine language programs.
Default size is 200 bytes. highest
location sets the highest memory
location available for use by BASIC.

CLEAR frees all memory used for data
without erasing the program which is
currently in memory. Also, arrays
are undefined; numeric variables are
set to zero; string variables are
nullified; any information set with
DEF statement is lost.

CLEAR
Clear all data from memory without
erasing the program.

CLEAR 32768
Clear the data and set the maximum
workspace size to 32K bytes.

CLEAR 32768, 1000
Clear data; set the maximum
workspace for BASIC to 32K bytes;
set the stack size to 1000 bytes.

61

4.1.1.3 CLICK

Purpose : Turn on/off the keyboard click sound.
Version : Cassette, Disk

Format : CLICK ON/OFF

Remarks : Pressing a key is echoed with a

"click" sound.

Example : 10 CLICK ON

20 INPUT "TYPE IN A SENTENCE, THEN
PRESS ENTER'"; S1$

40 INPUT "TYPE THE SAME SENTENCE
AGAIN AND NOTE THE DIFFERENCE";
S2%

As the first sentence is typed, the
clicking sound is heard. This is not
so as the second sentence is input.

62

4.1.1.4

Purpose

Version
Format

Remarks

Example

.

CONT

To continue program execution after
CONTROL + C keys being pressed
simultaneously, or a STOP or END
statement has been executed.

Cassette, Disk
CONT

Execution resumes at the point when
the break occurred. If the break
occurred after a prompt from an INPUT
statement, execution continues with
the reprinting of the prompt (?) or
prompt string.

CONT is usually used with STOP

for debugging. When execution

is stopped, intermediate values may
be examined and changed using direct
mode statements. Execution may be
resumed with CONT or a direct mode
GOTO which resumes execution at a
specified line number. Also it

may be used to continue execution
after an error.

CONT is invalid if the program has
been edited during the break.
Execution cannot be continued if

a direct mode error has occurred
during the break.

Create a loop. During program

execution, interrupt it by pressing
CTRL + STOP keys simultaneously.

63

64

10 FOR I =
20 PRINT I;
30 NEXT

40 PRINT
50 GOTO 10
RUN

1 2 3 4
1 2 3 4
Break in 20
Ok

CONT

6 7 8 9
1 2 3 4

1 TO 9

56 7 8 9
5 C

5 6 7

8

9

4.1.1.5

Purpose

Version
Format

Remarks

DATA

To store the numeric and string
constants that are accessed by
the program's READ statement(s).

Cassette, Disk
DATA 1list of constants

list of constants may contain
numeric constants in any format;
i.e., fixed point floating point or
integer. No numeric expressions
such as 1/4, 2%3 are allowed in the
list. String constants in DATA
statements must be surrounded by
double quotation marks only if they
contain comma, colons, or
leading or trailing blank.
Otherwise, quotation marks are not
needed.

DATA statements are nonexecutable
and may be placed anywhere in the
program. It may contain as many
constants as will fit on a logical
line constants are separated by
commas), and any number of DATA
statements may be used in a program.
The READ statements access the DATA
statements in order of line numbers.
They may be thought of as one
continuous list of items, regardless
of how many items are on a line or
where the lines are placed in the
program.

The variable type (numeric or
string) given in the READ statement
must agree with the corresponding
constant in the DATA statement.

DATA statements may be read from the

65

beginning or specified line by use
of the RESTORE statement.

Examples : 10 FOR I =1 TO 3
20 READ NAM$(I), AGE(I)
30 NEXT
40 DATA JOHN, 42, JOSEPHINE, 24,
LEO, 21

This program reads string and
numeric data from the DATA statement
in line 40. If a colon follows the
name, line 40 will be changed to

40 DATA "JOHN:", 42, "JOSEPHINE:",
24, "LEO:", 21

66

4.1.1.6

Purpose

Version

Format

Remarks

..

DEF FN

To define and name a function that is
written by the user.

Cassette, Disk

DEF FN name [(parameter list)]
= function definition

name must be a legal variable
name. This name, preceded by FN,
becomes the name of the function.

parameter list is comprised of
those variable names in the function
definition that are to be replaced
when the function is called. The
items in the list are separated by
commas . function definition 1is an
expression that performs the
operation of the function. It is
limited to one line. Variable names
that appear in this expression serve
only to define the function; they do
not affect program variables that
have the same name. A variable name
used in a function definition may or
may not appear in the parameter list.
If it does, the value of the
parameter is supplied when the
function is called. Otherwise, the
current value of the variable is used.

The variables in the parameter list
represent, on a one-to-one basis,

the argument variables or values that
will be given in the function call.

If a type is specified in the
function name, the value of the
expression is forced to that type
before it is returned to the calling
statement. If a type is specified in

67

Example

68

the function name and the argument
type does not match, a 'Type mismatch'
error occurs.

A DEFFN statement must be executed
before the function it defines may be
called. 1If a function is called
before it has been defined, an
'Undefined user function' error
occurs. DEFFN is illegal in the
direct mode.

10 DEF FNAREA (B,H) = B * H/2

20 INPUT "BASE ='"; BASE

30 INPUT "HEIGHT ='"; HEIGHT

40 PRINT "AREA IS" FNAREA
(BASE, HEIGHT)

RUN

BASE = ? 3

HEIGHT = ? 6

AREA IS 9

Ok

Line 10 defines the function FNAREA.
The function is called and then
printed in line 40.

4.1.1.7

Purpose

Version

Format

Remarks

Example

DEFUSR

To specify the starting address of
an assembly language subroutine,
which is called by the USR function.

Cassette, Disk

DEFUSR[digit]= integer
expression

digit may be any digit from O to
9. The digit corresponds to the
number of the USR routine whose
address is being specified. If
digit is omitted, DEFUSRO is
assumed. The value of integer
expression is the starting address
of value of of the USR routine.

Any number of DEFUSR statements may
appear in a program to redefine
subroutine starting addresses, thus
allowing access to as many
subroutines as necessary.

100 DEF USRO = 1000

200 X = USRO (Y * 5)
This example calls a routine at
absolute location 1000 in memory.

69

4.1.1.8

Purpose

Version

Format

Remarks

70

DEFINT
DEFSNG
DEFDBL
DEFSTR

To declare variable type as
integer, single precision, double
precision or string.

Cassette, Disk

DEFINT range(s) of letters
DEFSNG range(s) of letters
DEFDBL range(s) of letters
DEFSTR range(s) of letters

DEFINT/SNG/DBL/STR statements
specify the variable types to be
integer variable/single-precision
variable/double-precision variable/
string variable. However, a type
declaration character (%,!,# or $)
always takes precedence over a
DEFxxx statement in the type of
variables. (See the end of section
3.6 for details of declaration
characters.)

Example

10 DEFINT A, B
20 DEFSNG E, F
30 DEFDBL D, G-
40 DEFSTR G
50 AVERAGE
AVERAGE
60 EVASAVG
EVASAVG
70 DANSAVG
DANSAVG
80 COMMENT = "AVERAGE IS LOW"
PRINT
COMMENT
RUN
3
1.66667
2.3333333333333
AVERAGE IS LOW
Ok

I

(243+6)/3 : PRINT

(1+43+1)/3 : PRINT

(2+4+1)/3 : PRINT

Line 10 declares that all
variables beginning with the letter
A or B will be integer variable.

Line 20 renders all variables
beginning with letter E or F to be
single-precision variables.

Line 30 declares that all
variables beginning with letter D,
G, H or I will be double-precision
variables.

Line 40 causes all variables

beginning with letter C to be string
variables.

71

4.1.1.9
Purpose
Version

Format

Remarks

Example

72

DELETE
To delete program lines.
Cassette, Disk

DELETE [1line number]

[- Lline number]

The beginning line number is the

first line to be deleted. The ending
line number is the last line

to be deleted.

A period (.) may be used in place of
the number to indicate the current
line. If no line number is
specified, an '"Illegal function call"
error occurs.

BASIC always returns to command
level after a DELETE command is
executed.

Suppose the following program is
entered.

10 FOR H = O TO 23
20 FOR M = 0 TO 59
30 FOR S = 0 TO 59
40 CLS

50 PRINT H '":" M ":" §
60 BEEP

70 FOR T = 1 TO 50
80 NEXT T

90 NEXT S

100 NEXT M

110 NEXT H

DELETE 10

Line 10 is deleted.

DELETE .
Line 110 is deleted.

DELETE 60-80
Lines 60, 70, 80 are deleted.

DELETE -100
Lines 20, 30, 40, 50 90 and 100 are
deleted.

73

4.1.1.10

Purpose

Version

Format

Remarks

74

..

DIM

To specify the maximum values
array variable subscripts and
allocate storage accordingly.

Cassette, Disk
DIM {list of subscripted vari

If an array variable name is
without a DIM statement, the
value of its subscript(s) is
to be 10. If a subscript is
that is greater than the maxi

for

ables>

used
maximum
assumed
used
mum

specified, a "Subscript out of range

" error occurs. The minimum
for a subscript is always O.
maximum number of dimensions

value
The
for

an array is 255. The maximum number

of elements per dimension is
Yet both numbers are limited

32767.
by

memory size and statement length.

An array can only be dimensio

ned

once. Otherwise use the ERASE
statement to erase an array for

redimensioning.

Example

The following example creates two
arrays: a one- dimensional
string array named M$ with 13
elements, M$(0) through M$(12); and
a numeric array named D with 13
elements D(0) through D(12).

10
20
30
40
50
60
70
80

Ok

DEC, 31
RUN

YEAR 1984
JAN 31
FEB 29
MAR 31
APR 30
MAY 31
JUN 30
JUL 31
AUG 31
SEP 30
OCT 31
NOV 30
DEC 31

DIM M$(12)

DIM D(12)

PRINT "YEAR" TAB(5) 1984

FOR I = 1 TO 12

READ M$(I), D(I)

PRINT M$(I) TAB(6) D(I)

NEXT

DATA JAN, 31, FEB, 29, MAR, 31,
APR, 30, MAY, 31, JUN, 30, JUL,
31,

AUG, 31, SEP, 30, OCT, 31, NOV,
30,

75

76

Now Change the program to read:

10 DIM A $ (12, 1)

20 FOR J = 0 TO 12

30 FORK =0TO 1

40 READ A$ (J,K),

50 PRINT A$ (J,K)

60 NEXT K

70 PRINT

80 NEXT J

90 DATA YEAR, 1984, JAN, 31,
FEB, 29,
MAR, 31, APR, 30, MAY, 31, JUN,
30,
JuL, 31, AUG, 31, SEP, 30, OCT,
31,
Nov, 30, DEC, 31

In this example, a two-dimensional
array A$ with 26 elements, A$(0,0)
through A$(12,1) is created.

4.1.1.11

Purpose

Version

Formar

Remarlks

Example

END

: To terminate program execution, close

all files and return to command
level.

¢ Cassette, Disk
¢ END

: END statement may be placed anywhere

in the program to terminate
execution. Unlike the STOP
statement, END does not cause a BREAK
message to be printed. An END
statement at the end of a program

is optional.

10 READ X

20 PRINT X

30 IF X 100 THEN END ELSE GOTO
10

40 DATA 50, 200

RUN

50

200

Ok

Per line 30, the program will
terminate if value of X exceeds 100.

77

4.1.1.12
Purpose
Version
Format

Remarks

Example

78

ERASE

: To eliminate arrays from a program.
: Cassette, Disk
+ ERASE list of array variables

: Arrays may be redimensioned after

they are ERASEd, or the previously
allocated array space in memory may
be used for other purposes. If an
attempt is made to redimension an
array without first erasing it, a
"Redimensioned array'" error occurs.

10 PRINT FRE(O);

20 DIM A (50, 50)
30 PRINT FRE (0);
40 ERASE A

50 DIM A (10, 10)
60 PRINT FRE (0)

RUN

29126 8308 28148

Ok

This example uses the FRE function to
illustrate how ERASE can be used to
free memory. If dimensioned as
A(50,50) 20K bytes of memory (29126-
8308) is required. When dimensioned
as A(10,10), less memory 1K bytes
(29126-28148) is required.

Type
DELETE 40
Run the program to see what happens.

4.1.1.13

Purpose

Yersion

Formart

ERROR

To simulate the occurrence of an
error or to allow error codes to be
defined by the user.

Cassette, Disk
ERROR integer expression

The value of integer expression
must be greater than O and less than
255. If the value of integer
expression equals an error code
already in use by BASIC, the ERROR
statement will simulate the
occurrence of that error, and the
corresponding error message will be
printed.

To define your own error code, use

a value that is greater than any used
by BASIC for error codes. See
Appendix A for a list of error codes
and messages. (It is preferable to
use the highest available values, so
compatibility may be maintained

when more error codes are added to
BASIC.) This user defined error code
may then be conveniently handled in
an error trap routine.

If an ERROR statement specified a
code for which no error message has
been defined, BASIC responds with
the message "Unprintable error'".
Execution of an ERROR statement for
which there is no error trap routine
causes an "Unprintable error'" error
message to be printed and execution
to halt.

79

Example ¢ In direct mode:
ERROR 10
Undefined array
Ok
Or define error message.
10 READ A$
20 IF A$ = "FALSE" THEN ERROR 250
30 DATA FALSE
RUN
Unprintable error in 20
Ok

80

4.1.1.14 FOR NEXT

Purpose

Version
Format

Remarks

: To allow a series of instructions to
be performed in a loop a given number
of times.

Cassette, Disk

: FOR variable =x To y [STEP z]

variable can be integer, single-
precision or double-precision, where
X, ¥, 2 are numeric expressions.

variable is used as a counter.
The first numeric expression (x) is
the initial value of the counter.
The second numeric expression (y) is
the final value of the counter. The
program lines following the FOR
statement are executed until the NEXT
statement is encountered. Then the
counter is incremented by the amount
specified by STEP. A check is
performed to see if the value of the
counter is now greater than the final
value (y). 1If it is not greater
BASIC branches back to the statement
after the FOR statement and the
process is repeated. If it is
greater, execution continues with the
statement following the NEXT
statement. This is a FOR NEXT
loop. If STEP is not specified, the
increment is assumed to be one.
If step is negative, the final value
of the counter is set to be less than
the initial value. The counter is
decremented each time through the
loop, and the loop is executed one
time at least if the initial value of
the step is less than the final value
times the sign of the step.

81

Example

82

The body of the loop is executed one
time at least if the initial value
of the loop times the sign of the
step is less than the final value
times the sign of the step.

FOR.....NEXT loops may be nested,
that is, a FOR..... NEXT loop may be
placed within the context of

another FORNEXT loop. When
loops are nested, each loop must have
a unique variable name as its
counter. The NEXT statement for the
inside loop must appear before that
for the outside loop. If nested
loops have the same end point, a
single NEXT statement may be used for
all of them. Such nesting of FOR
«ees. NEXT loops is limited only by
available memory.

The variable(s) in the NEXT
statement may be omitted, in which
case the NEXT statement will match
the most recent FOR statement. If a
NEXT statement is encountered before
its corresponding FOR statement, a
'"NEXT without FOR' error message is
issued and execution is terminated.

10 SUM = O

20 FOR X =1 TO 100
30 SUM = SUM + X

40 NEXT

50 PRINT "THE SUM OF INTEGERS FROM
1 TO 100 is" SUM

RUN

THE SUM OF INTEGERS FROM 1 TO 100
is 5050

Ok

The loop is executed a hundred times,
starting from 1 to 100 with an
increment of 1.

10 SCREEN 2

20 FOR X = O TO 20 STEP 2
30 FOR Y = 20 TO O STEP -2
40 PSET (X, Y)

50 NEXT Y

60 NEXT X

Nested loops are created in the
second example. The increment for X
is 2. The decrement for Y is 2.
Loop Y is executed 11 times before
loop X is executed once.

83

4.1.1.15

Purpose

Yersion

Format

Remarks

84

£Y3

GOSUB RETURN

To branch to subroutine beginning at
line number and return from a
subroutine.

Cassette, Disk
RETURN [< line number D]

< line number > is the first line of
the subroutine may be called any
number of times in a program, and

a subroutine may be called from
within another subroutine. Such
nesting of subroutines is limited
only by available memory.

The RETURN statement(s) in a
subroutine causes BASIC to branch
back to the statement following the
most recent GOSUB statement. A
subroutine may contain more than one
RETURN statement, should logic
dictate a return at different points
in the subroutine. Subroutines may
appear anywhere in the program, but
it is recommended that the subroutine
be readily distinguishable from the
main program. To prevent inadvertent
entry into the subroutine, it may be
preceded by a STOP, END or GOTO
statement that directs program
control around the subroutine.
Otherwise a 'RETURN without GOSUB'
error message is issued and execution
is terminated.

Example

10 INPUT "WHAT'S THE DAY OF THE
WEEK" ; A
20 GOSUB 60
30 INPUT "MEMO'"; M $
40 GOTO 10
50 IF A=1 THEN PRINT ''MONDAY"
60 UF A=2 THEN PRINT "TUESDAY"
70 IF A=3 THEN PRINT "WEDNESDAY"
80 IF A=4 THEN PRINT "THURSDAY"
90 IF A=5 THEN PRINT "FRIDAY"
100 IF A=6 THEN PRINT "SATURDAY"
ELSE PRINT
"SUNDAY"
110 RETURN

This shows how a subroutine works.
The GOSUB in line 20 calls the
subroutine starting at line 60.

So the program branches to line 60
and start excuting statements there
until it strikes the RETURN statement
in line 110. The program is sent
back to the statement after the
subroutine call, i.e., line 30. The
GOTO statement in line 50 prevents
the subroutine from being performed
the second time.

85

4.1.1.16

Purpose

Version
Format

Remarks

Example

86

GOTO

¢ To branch unconditionally out of

the normal program sequence to a
specified line number .

: Cassette, Disk
: GOTO < line number >

: If <line number > is an executable

statement, that statement and those
followings are executed. If it is

a nonexecutable statement, execution
proceeds at the first executable
statement encountered after < line
number> .

100 PRINT "DO YOU WANT ANOTHER
GAME (Y/N)"

200 A$ = INKEY$

300 IF A$ < DCHR$(89) AND A$
CHR$(78) THEN GOTO 200

400 IF A$ = CHR$(89) THEN GOTO 10

500 END

This shows how a program is branched.
Line 300 does a checking first, then
branches the program to line 200 if
the result is positive. Likewise

for line 400.

4.1.1.17

Purpose

Version

Format

Remarks

IF THEN ELSE
IF GOTO ELSE

: To make a decision regarding program

flow based on the result returned by
an expression.

: Cassette, Disk

: IF < expression > THEN

<statement(s) > / < line number >
[ELSE <statement(s) >/

<line number >]

IF < expression > GOTO < line number
[ELSE <statement(s)>/

<line number >]

¢+ If the result of the expression is

true (not zero), the THEN or GOTO
clause is executed. THEN may be
followed by either a line number for
branching orone or more statements to
be executed. GOTO is always followed
by a line number. If the result of
the expression>1is false (zero), the
THEN or GOTO clause is ignored and
the ELSE clause, if present, is
executed. Execution continues with
the next executable statement.

IF.....THEN.....ELSE statements

may be nested. Nesting is limited
only by the length of the line.

If the statement does not contain the
same number of ELSE and THEN clauses,
each ELSE is matched with the

closest unmatched THEN.

If A=B THEN IF B=C THEN PRINT
||A=cl|
ELSE PRINT "A < DC"

The computer will not print "A < DC"
when A< DB.

87

88

It will print "A < >C" when A=B and
B<>C.

If an IF THEN statement is
followed by a line number in the
direct mode, an 'Undefined line'
error results unless a statement with
the specified line number had
previously been entered in the
indirect mode.

IF 2 + 2 > 2 THEN PRINT "2 + 2 IS
LARGER THAN 2"
2 + 2 IS LARGER THAN 2
Ok
Since 2 + 2 > 2 is a true statement,
the THEN clause is executed.
IF 2 >3 THEN PRINT "2 IS LESS THAN
3”
ELSE PRINT "2 >3 IS FALSE"
2 >3 IS FALSE
Ok
Since 2 > 3 is false the ELSE clause
is executed.

10 PRINT
20 FOR I
30 PRINT
40 INPUT
50 IF N

60 T =T
70 NEXT

80 PRINT

RUN

IS? P

0]

Is? 1

Is? 1

Is? 1

IS? O

OUT OF 5

L~ WOWN D=

Ok

ARE "5 - T "HEADS AND " T
"TAILS"

HEAD OR TAIL (O OR 1)

REDO FROM START

AND 3 TAILS

"HEAD OR TAIL (O OR 1)"
=1 TO 5
I HISH;
N

O AND N 1 GOTO 40
+ N

"OUT OF 5 TRIALS, THERE

TRAILS, THERE ARE 2 HEADS

Line 50 tests whether O or 1 is

entered.

If not, the program flow is

directed to line 40.

89

4.1.1.18

Purpose

Version

Format

Remarks

90

INPUT

: To allow input from the keyboard

during proogram execution.

: Cassette, Disk

: INPUT [" < prompt stringd ";]<list of

variables)>

¢ When an INPUT statement is

encountered, program execution pauses
and a question mark is printed to
indicate the program is waiting for
data. If "<prompt string»" is
included, the string is printed
before the question mark. The
required data is then entered at

the keyboard.

The data that is entered is assigned
to the variable(s) given in variable
list> . The number of data items
supplied must be the same as the
number of variables in the list.

Data items are separated by commas.

The names in the < list of
variables > may be numeric or string
variable names(including subscripted
variables). The type of each data
item that is input must agree with
the type specified by the variable
name. (Strings input to an INPUT
statement need not be surrounded by
quotation marks.)

Responding to input with the wrong
type of value (string instead of
number, etc.) causes the message
'?Redo from start' to be printed. No
assignment of input value is made
until an acceptable response is
given.

Example

10 INPUT "A and B';A,B
20 PRINT A+B

Ok

run

A and B? 10, E

?7Redo from start

A and B? 10,20

30

Ok

Responding to INPUT with too many
items causes the message '"?Extra
ignored" to be printed and the next
statement to be executed.

run
A and B? 10,20,30
?Extra ignored

30

Ok

Escape INPUT by typing CTRL-C or the
CTRL and STOP keys simultaneously.
BASIC returns to command level and
types '""Ok". Typing CONT resumes
execution at the INPUT statement.

91

4.1.1.19

Purpose

Yersion
Format

Bemarlks

Example

92

LET

To assign value of an expression to
a variable.

Cassette, Disk

[LET] variable = expression
Notice the word LET is optional; the
equal sign is sufficient when

assigning an expression to a variable
name.

10 LET D1=3

20 LET D2=4

30 LET D3=5

40 SUM = D1+D2+D3
50 PRINT SUM

RUN

12

Ok

Try out the above program by deleting
LET from lines 10 through 30.

4.1.1.20

Purpose

Version

Format

Remarks

S

Exsmple

LINE INPUT

To input an entire line (up to
254 characters) to a string variable,
without the use of delimiters.

Cassette, Disk

LINE INPUT [" prompt string ';]
string variable

The prompt string is a string literal
that is printed at the terminal
before input is accepted. A question
mark is not printed unless it is part
of the prompt string. All input from
the end of the prompt to an ENTER is
assigned to string variable

Escape LINE INPUT by typing CTRL-C or
the CTRL and STOP keys
simultaneously. BASIC returns to
command level and types '"Ok'". Typing
CONT resumes execution at the LINE
INPUT statements.

LINE INPUT "NAME:'";N$
NAME: JOHN K. LIVINGSTONE
Ok

The computer prompts you to input a
string after the printout '"NAME:'".
Unless ENTER is pressed, the Ok
prompt won't display.

93

4.1.1.21
Purpose
Version

Format

Remarks

94

LIST
To list all or part of the program.
Cassette, Disk

LIST [1line number [-[Lline
number]]]

line number lies in the range O
to 65529. The beginning line number
is the firrst line to be listed.

The ending line number is the last
line to be listed. 1If only the
first line number is specified,
that line is listed.

If "-" and the second line number
are specified, all lines from the
beginning of the program through
that line are listed.

If both line numbers are omitted,
the entire program is listed.

A period (.) may be used to indicate
the current line number.

Listing is terminated by pressing
CTRL + STOP Keys simultaneously.
Listing is suspended by depressing
STOP. Resume by pressing STOP the
second time.

Example : Type

in the following program first:

10 REM DEMONSTRATION PROGRAM

20 DEFINT A - Z

30 J=4: A =16: B =80: S =
8

40 ZZ = RND (- TIME)

50 SCREEN 1

60 FOR K = A TO B STEP S

70 C = INT (RND (1) *16)

80 LINE (K,K) - (255 - K, 191 -
K), G, BF

90 G2 = INT (RND (1) *16)

100 IF G = G2 THEN 90 ELSE COLOR
C2

110 FOR I = K TO 255 - K STEP J

120 LINE (I,K) - (255 - I, 191 -
K)

130 NEXT

140 FOR I = 191 - K TO K STEP -J

150 LINE (K,I) - (255 - K, 191 -
1)

160 NEXT

170 FOR Z = 1 TO 1000: NEXT:
NEXT

180 FOR Z = O TO 1000: NEXT

190 SWAP A,B

200 S = -5

210 GOTO 50

LIST
The entire program is listed on the
screen.
LIST 10

List line 10.

LIST 10 - 30
Lines 10 through 30 and listed.
LIST - 100

List from the first line 1i.e.,
the lowest line number, through line

100.

95

4.1.1.22

Purpose

Version

Format

Remarks

Example

96

LLIST

To list all or part of the program
on the printer.

Cassette, Disk

LLIST [1line number [-[line
number]]]

Refer to LIST command for details.

Refer to LIST command for details.

4.1.1.23

Purpose
Version

Format

Remarks

Example

LPRINT
LPRINT USING

To print data at the line printer.
Cassette, Disk

LPRINT[< list of expression)]
LPRINT USING {string expression) ;
{list of expressions >

< list of expression is a list

of numeric and/or string
expressions. Expressions should be
separated by commas or semicolons.

string expression is a string
constant or variable which
identifies the format to be used for
printing. LPRINT assumes an 132-
character wide printer. Thus, BASIC
automatically inserts an ENTER or
line feed after printing 132
characters. This will result in one
line being skipped when 132
characters are printed; unless the
LPRINT statement ends with a
semicolon.

Refer to PRINT and PRINT USING.

97

4.1.1.24 MID$
Purpose : To replace a portion of one string
with another string.

Version : Cassette, Disk

Format : MID$(<string expression 1>),n[,m]=
<string expression 2>

Remarks : The character in < string expression
1> , beginning at postion n, are
replaced by the characters in
< string expression 2 >. The
optional m refers to the number of
characters from < string
expression 2 > that will be used in
the replacement. Whether m is
omitted or included, the replacement
of characters never goes beyond the
original length of string
expression 1 .

Example : 10 A$="'SCAN"
20 MID$(A$,2,3)="TAR"
30 PRINT A$
RUN
STAR
Ok

On line 20, the second, third and
fourth characters of A$ are replaced
by the string ''TAR'".

98

4.1.1.25

Purpose

Version
Format

Remarks

NEW

To delete entire program from
working memory and reset all
variables.

Cassette, Disk

NEW

It causes all files to be closed and
turns trace off if it was on.

NEW is usually used to free memory
before entering a new program.
BASIC always returns to command
level after NEW is executed.

99

4.1.1.26

Purpose

Yersion

Format

Remarks

100

.

..

ON ERROR GOTO

To enable error trapping and specify
the first line of the error handling
subroutine.

Cassette, Disk
ON ERROR GOTO line number

Once error trapping has been enabled,
all errors detected, including direct
mode errors (e.g., syntax error),
will cause a jump to the specified
error handling subroutine. If line
number does not exist, an
"Undefined line number" error
results. To disable error trapping,
execute an "ON ERROR GOTO 0'.
Subsequent errors will print an error
message and halt execution. An '"ON
ERROR GOTO 0" statement that appears
in an error trapping subroutine
causes BASIC to stop and print the
error message for the error that
caused the trap. It is recommended
that all error trapping subroutines,
execute an "ON ERROR GOTO 0" if an
error is encountered for which there
is no recovery action.

If an error occurs during execution
of an error handling subroutine, the
BASIC error message is printed and
execution terminates. Error trapping
does not occur within the error
handling sub- routine.

Examp le

10 REM GUESS A NUMBER FROM 1 TO
100

20 ON ERROR GOTO 80

30 A =1 + INT(100% RND (-TIME))

40 INPUT "YOUR GUESS";B

50 IF A B THEN ERROR 80 ELSE IF
A B THEN ERROR 81

60 PRINT "YOU'VE GOT IT"

70 END

80 IF ERR = 80 THEN PRINT "TOO
LARGE" ELSE PRINT "TOO SMALL"

90 RESUME 40

100 END

This program is a number guessing
game. By using error codes 80 and 81
which BASIC doesn't use, the program
traps the error if the guessed
number, B does not equal to A.

101

4.1.1.27

Purpose

Version

Format

Remarks

Example

102

ON ... GOTO
ON ... GOSUB

To branch to one of several specified
line numbers, depending on the value
returned when an expression is
evaluated.

Cassette, Disk

ON < expression > GOTO < line number
[,< line number >].....

ON < expression > GOSUB < line number
[,<line number D].....

The value of < expression >
determines which line number in the
list will be used for branching. For
example, if the value is three, the
third line number in the list will be
the destination of the branch. (If
the value is a noninteger, the
fractional portion is discarded.)

In the ON ... GOSUB statement, each
line number in the list must be the
first line number of a subroutine.

If the value of < expression > is
zero or greater than the number of
items in the list (but less than or
equal to 255), BASIC continues with
the next executable statement. If
the value of < expression > is
negative or greater than 255, an
'Illegal function call' error occurs.

100 ON L GOTO 150, 200, 300
If L equals 1, branch to line 150; if

L equals 2, branch to 200; if L=3,
branch to 300.

100 ON M GOSUB 1000, 1500

If M equals 1, branch to subroutine
starting at line 1000; if M equals
2, branch to subroutine starting at
line 1500.

103

4.1.1.28

Purpose

Version

Format

Bemarks

Example

104

POKE

To write a byte into a memory
location.

Cassette, Disk

POKE < address of the memory) ,
<integer expression >

<address of the memory> 1is the
address of the memory location to be
POKEd. The < integer expression) is
the data (byte) to be POKEd. It must
be in the range O to 255. And
address of the memory must be in the
range -32768 to 65535. If this value
is negative, address of the memory
location is computed as a subtracting
from 65536. For example, -1 is same
as the 65535 (=65536-1). Otherwise,
an '"Overflow" error occurs.

Poke &H5A00, &HFF
Write the data &HFF at the location
&H5A00.

4.1.1.29

Purpose
Version
Format

Remarks

PRINT

To output data to the console.
Cassette, Disk

PRINT [<list of expressions)]

If < list of expressionsd 1is
included, the values of the
expressions are printed at the
console. An expression in the list
may be a numeric and/or string
expression. String must be enclosed
in quotation marks.

The position of each printed item

is determined by the punctuation

used to separate the items in the
list. BASIC divides the line into
print zones of 14 spaces each. In
the < list of expression)> , a comma
causes the next value to be printed
at the beginning of the next zone. A
semicolon causes the next value to be
printed immediately after the last
value. Typing one or more spaces
between expressions has the same
effect as typing a semicolon.

If a comma or a semicolon terminates
the < list of expressions)» , the
next PRINT statement begins printing
on the same line, spacing
accordingly. If the < list of
expressions > terminates without a
comma or a semicolon, a line feed
follows. 1If the printed line

is longer than the screen width,
BASIC goes to the next physical

line and continues printing.

105

Example

106

Printed numbers are always followed
by a space. Positive numbers are
preceded by a space. Negative
numbers are preceded by a minus sign.

A question mark may be used in place
of the word PRINT in a PRINT
statement.

10 PRINT "AREA OF CIRCLE = 3.1416*
RADIUS A

20 PRINT

30 ? "RADIUS"

40 INPUT R

50 A = 3.1416% R * 2

60 PRINT

70 PRINT "AREA EQUALS TO"; A

RUN

AREA OF CIRCLE = 3.1416% RADIUS¥*

2

?4

AREA EQUALS TO 50.2656

Ok

Line 10 commands a string to be
printed. Line 20 renders a line
being skipped. Question mark (?)

can be used to substitute the word
"PRINT". On line 70, both string and
number are printed, with no line
skipped between both printouts,
because of the usage of semicolon

(3).

4.1.1.30

Purpose

Version

Format

Remarks

PRINT USING

To print strings or numerics using a
specified format.

Cassette, Disk

PRINT USING <string expression)> ;
<list of expressions»

<list of expressions > comprises the
string expressions or numeric
expressions that are to be printed,
seperated by semicolons. < string
expression> is a string literal (or
variable comprising special
formatting characters. These
formatting characters (see below)
determine the field and the format of
the printed strings or numbers.

When PRINT USING is used to print
strings, one of three formatting
characters may be used to format the
string field:

l'!"
Specifies that only the first

character in the given string is to
be printed.

Example:
A$="Japan"

Ok

PRINT USING '"'!'";A$
J

Ok

" < n spaces > "

107

108

Specifies that 2+n characters from
the string are to be printed.

If the " " signs are typed with no
spaces, two characters will be
printed; with one space three
characters will be printed, and so
on. If the string is longer than the
field, the extra characters are
ignored. 1If the field is longer than
the string, the string will be left-
justified in the field and padded
with spaces on the right.

Example:

A$="Japan"

Ok

PRINT USING "\ \';A$
Japa

Ok

When PRINT USING is used to print
numbers, the following special
characters may be used to format
the numeric field:

n#n

A number sign is used, to represent
each digit position. Digit positions
are always filled. 1If the number to
be printed has fewer digits than
positions specified, the number will
be right-justified (preceded by
spaces) in the field.

A decimal point may be inserted at
any position in the field. If the
format string specifies that a

digit is to precede the decimal
point, the digit will always be
printed (as O if necessary). Numbers
are rounded as necessary.

Example:

PRINT USING "###.##";10.2, 2, 3.456,
<24, 123.5 10.20 2.00 3.45 0.24
123.50

Ok

l|+l|

A plus sign at the beginning or end
of the format string will cause the
sign of the number (plus or minus)
to be printed before or after the
number.

Example:

PRINT USING "+###.##";1.25,-1.25
+1.25 -1.25

Ok

PRINT USING "###.##+"3;1.25,-1.25
1.25+ 1.25-

Ok

A minus sign at the end of the format
will cause negative numbers to be
printed with a trailing minus sign.

Example:

PRINT USING "###.##-"31.25,-1.25
1.25 1.25-

Ok

A double asterisk at the beginning of
the format string causes leading
spaces in the numeric field to be
filled with asterisks. The ** also
specifies positions for two or more
digits.

109

110

Example:

PRINT USING "**#.##'";1.25,-1.25
#*%]1,25%-1.25

Ok

ll$$ll

A double dollar sign causes dollar
sign to be printed to the immediate
left of the formatted number. The
$$ specifies two more digit
positions, one of which is the $
sign. The exponential format cannot
be used with $$. Negative numbers
cannot be used unless the minus sign
trails to the right.

Example:

PRINT USING "$$###.##"312.35,-12.35
$12.35 -$12.35

Ok

PRINT USING " $$###.##-""3;12.35,-12.35
$12.35 $12.35-

Ok

n**$n

The **$ at the beginning of a format
string combines the effects of the
above two symbols. Leading spaces
will be asterisk-filled and a dollar
sign will be printed before the
number. **$ specifies three more
digit positions, one of which is the
dollar sign.

Example:

PRINT USING '"**$#.##";12.35
*$12.35

Ok

"n.mn
’

A comma that is to the left of the
decimal point in a formatting string
causes a comma to be printed to the
left of every third digit to the left
of the decimal point. A comma that
is at the end of the format string is
printed as part of the string. A
comma specifies another digit
position. The comma has no effect if
used with the exponential format.

Example:

PRINT USING "####, .##";1234.5
1,234.50

Ok

PRINT USING "####.##,"";1234.5
1234.50,

Ok

PAAAAT

Four carats may be placed after the
digit position characters to specify
exponential format. The four carats
allow space for E XX to be printed.
Any decimal point position may be
specified. The significant digits
are left-justified, and the exponent
is adjusted. Unless a leading + or
trailing + or - is specified, one
digit position will be used to the
left of the decimal point to print a
space or minus sign.

111

112

Example:

PRINT USING "##.## A W'5234.56
2.35E+02

Ok

PRINT USING "#.##AWWA+"5-12.34
1.23E+01-

Ok

PRINT USING "#.##AAMA-"3-12.34
1.23E+01-

Ok

PRINT USING"+#.##AAAN'312.34,-12.34

+1.23E+01-1.23E+01

Ok

"%"

If the number to be printed is larger
than the specified numeric field, a
percent sign is printed in front of
the number. Also, if rounding causes
the number to exceed the field, a
percent sign will be printed in front
of the rounded number.

Example:

PRINT USING "##.##"3;123.45
%123.45

Ok

PRINT USING ".##'";.999

%1 .00

Ok

If the number of digits specified
exceed 24, an "Illegal function call"
error will result.

4.1.1.31

Purpose

Version
Format

Remarks

READ

To read values from a DATA statement
and assign them to variables.

Cassette, Disk

READ < list of variables >

A READ statement must always be used
in conjunction with a DATA statement.
READ statements assign variables to
DATA statement values on a one-to-one
basis. READ statement variables may
be numeric or string, and the values
read must agree with the variable
types specified. 1If they do not
agree, a '"Syntax error'" will result.

A single READ statement may access
one or more DATA statements (they
will be accessed in order of line
number), or several READ statements
may access the same DATA statement.
If the number of variables in list
of variables exceeds the number of
elements in the DATA statement(s), an
'Out of DATA' error will result. If
the number of variables specified is
fewer than the number of elements in
the DATA statements, subsequent READ
statements will begin reading data at
the first unread element. If there
are no subsequent READ statements,
the extra data is ignored.

To reread DATA statements from the
start, use the RESTORE statement.

113

Example

114

10 FOR I =1 TO 3

20 READ NAM$(I), AGE(I)

30 NEXT

40 DATA JOHN, 42, JOSEPHINE, 24,
LEO, 21

This program reads string and
numeric data from the DATA
statements in line 40. If a colon
follows the name, line 40 should be
changed to:

40 DATA "JOHN:'", 42, "JOSEPHINE:",
24, "LEO:", 21

4.1.1.32 REM

Purpose

Version
Format

Remarks

Example

To allow explanatory remarks to be
inserted in a program.

Cassette, Disk
REM remark

REM statements are not executed but
are output exactly as entered when
the program is listed.

REM statements may be branched into
(from a GOTO or GOSUB statement), and
execution will continue with the
first executable statement after the
REM statement.

Remarks may be added to the end of a
line by preceding the remark with a
apostrophe instead of REM.

Do not use this in a DATA statement
as it would be considered as a legal
data.

10 !

20 REM CALCULATE DISTANCE TRAVELLED
30 INPUT "AVERAGE VELOCITY" ; V

40 INPUT "TRAVELLING TIME" ; T
50D =V *T

60 PRINT *DISTANCE COVERED IS" ; D
RUN

AVERAGE VELOCITY? 6

TRAVELLING TIME? 8

DISTANCE COVERTED IS 48

Ok

Line 10 shows that (') apostrophe
produces the same effect as REM. REM
is useful in indicating subroutines
in a large program.

115

4.1.1.33
Purpose
Version

Format

Remarks

116

RENUM

To renumber program lines.
Cassette, Disk

RENUM [[< new number >][,[<old
number >] [, <increment >]]]

<new number > 1is the first line
number to be used in the new
sequence. The default is 10.

<old number> 1is the line in the
current program where renumbering is
to begin. The default is the first
line of the program.

<increment > is the increment to be
used in the new sequence. The
default is 10.

RENUM also changes all line number
references following GOTO, GOSUB,
THEN, ELSE, ON..GOTO, ON..GOSUB and
ERL statements to reflect the new
line numbers. If a nonexistent line
number appears after one of these
statements, the error message
"Undefined line nnnnn in mmmmm" is
printed. The incorrect line number
reference (nnnnn) is not changed by
RENUM, but line number (mmmmm) may

be changed.

NOTE: RENUM cannot be used to
change the order of program lines
(for example, RENUM 15,30 when the
program has three lines numbered 10,
20 and 30 only) or to create line
numbers greater than 65529. An
'Illegal function call' error will
result.

Example : Enter the following program and the
respective commands. LIST the
program to note the change.

10 COLOR 15, &

12 SCREEN 1

15 LINE (50,50) - (205,141), 8
19 LINE (50,141) - (205,50), 8
23 CIRCLE (128,96), 90, 8

30 PAINT (135,125), 8

40 GOTO 40

RENUM
The entire program is renumbered,
starting at 10 with an increment of
10.

RENUM 50, 40, 5
Renumber the lines from 40 up

starting at 50 with an increment of
5.

RENUM , , 30
Renumber all lines from the lowest
line number with an increment of 30.
The starting line number is 10.

RENUM ,5, 2
Renumber from line 5 as 10 with an
increment of 2.

RENUM 5, ,15
Renumber from the first line as 5
with an increment of 15.

RENUM 3, 5
Starting from line 5, renumber it as
3, with a default increment of 10

117

4.1.1.34

Purpose

Version
Format

Remarks

Example

118

RESTORE

To allow DATA statements to be reread
from a specified line.

Cassett, Disk
RESTORE [< line number >]

After a RESTORE statement is
executed, the next READ statement
accesses the first item in the first
DATA statement in the program. If
<line number > is specified, the
next READ statement accesses the
first item in the specified DATA
statement. If a nonexistent

line number is specified, and
"Undefined Line number" error will
result.

10 DIM X (12)

20 FOR I =1 TO 3
30 FORK =1 TO 4
40 READ X (L)

50 PRINT X (L);
60 NEXT

70 PRINT

80 RESTORE

90 NEXT

100 DATA 1, 2, 3, 4
RUN

1 2 3 4

1 2 3 4

1 2 3 4
Ok

The RESTORE statement in line 80
resets the DATA pointer to the
beginning. Thus the values in DATA
statement are used again.

4.1.1.35

Purpose

Yersion

Format

Remarks

RESUME

To continue program execution after
an error recovery procedure has been
performed.

Cassette, Disk

RESUME

RESUME O

RESUME NEXT

RESUME < line number >

Any one of the four formats shown
above may be used, depending upon
where execution is to resume:

RESUME or RESUME O
Execution resumes at the statement
which caused the error.

RESUME NEXT
Execution resumes at the statement
immediately following the one which
caused the error.

RESUME < line number >
Execution resumes at < line
number > .

A RESUME statement that is not in an

error trap subroutine causes a
"RESUME without error'.

119

Example

120

10
20
30
40
50
60
100

110

Ok

RUN
LACKING DATA

ON ERROR GOTO 100
FOR I =1 TO 10

READ X(I)

NEXT

DATA 5, 4, 3, 2, 1
END

IF ERR=4 AND ERL = 30 THEN
PRINT "LACKING DATA"
RESUME 20

Line 100 is the error trapping
routine. The RESUME statement on
line 110 directs the program flowing
back to line 20.

4.1.1.36 RUN

Purpose

Version

Format

Remavris

Example

To execute a program currently in
memory.

Cassette, Disk

RUN [line number]
RUN [filespec] [,R]

If line number is specified,
execution begins on that line.
Otherwise, it begins at the lowest
line number.

RUN [filespec | loads a file from
diskette or cassette into memory and
runs it. RUN deletes the current
contents of memory, closes all files
before loading the program. If the
[,R] option is included, all open
data files are kept open.

Enter the following program and
commands.

10 PRINT 10 "x";
20 PRINT 20 ''=";
30 M =10 * 20
40 PRINT M

RUN

10 x 20 = 200
Ok

RUN 30

200

Ok

The following example loads the
program "TEST" from the disk drive 1
and runs it.

RUN "1: TEST"

121

If the program is stored in tape,
enter the following command.
RUN "TEST"

122

4.1.1.37

Purpose

Version
Format

Remarks

Example

STOP

To terminate program execution and
return to command level.

Cassette, Disk
STOP

STOP statement may be used anywhere
in a program to terminate execution.
When a STOP statement is encountered,
the following message is printed:

Break in nnnn (nnnn is a
line number)

Unlike the END statement, the STOP
statement does not close files.

Execution is resumed by issuing a
CONT command.

10 FOR I =1 TO 4

20 INPUT X

30 SUM = SUM + X

40 NEXT

50 STOP

60 PRINT "SUM="; SUM
70 END

Break in 50
Ok

CONT

SUM = 22

Ok

123

This example calculates the sum of 4
figures, then stops at line 50; with
the printout '"Break in 50". Use CONT
to resume program execution.

124

4.1.1.38

Purpose

Version
Format

Remarks

Example

SWAP

To exchange the value of two
variables.

Cassette, Disk
SWAP < variable> ,< variable >

Any type of variable may be SWAPed
(integer, single precision, double
precision, string), but the two
variables must be of the same type or
a "Type mismatch" error results.

10 A$ = "HEAD" : B$ = "AND" : C$ =
”TAIL”

20 PRINT A$; B$; C$

30 SWAP A$, C$

40 PRINT A$ + B$ + C$

RUN

HEAD AND TAIL

TAIL AND HEAD

Ok

Line 30 renders the content of A$ be
changed to "TAIL" while C$ be changed
to '"HEAD".

125

4.1.1.39 SWITGH/SWITCH STOP

Purpose : Allow two programs to be stored
simultaneously in the RAM.

Version : Disk

Format ¢ SWITCH
SWITCH STOP

Remarls : This caters for the bank program
switching of bank 02 and bank 22.
This command is only valid as Disk
BASIC is run, with the 64K RAM
Cartridge installed. Select bank
02 and bank 22 to be switched on.

As the command SWITCH STOP is
executed, the program resided in
bank 22 will be executed.

Example : Enter the following program which
is resided in bank 02:

10 PRINT "TESTING SWITCH
COMMAND"
20 PRINT 'NOW BANK 02 IS ON"

After the "Ok'" prompt, type:

SWITCH

A clicking noise from the disk
drive is heard. The screen is
cleared to display the following
message:

Initializing 2nd bank

Disk version 1.0 by Microsoft
Corp.

Ok.

Now enter another program to be
resided in bank 22.

126

10 PRINT '"NOW BANK 22 IS ON"

Then type

SWITCH ENTER
RUN ENTER

You will discover that the first
program is executed.

Now try another command:

SWITCH STOP
C

Break

Ok

Run the program and you always
find the one residing in bank
22 1is executed.

127

4.1.1.40

Purpose

Version
Format

Remarks

Example

128

TRON/TROFF

To trace the execution of program
statements.

Cassette, Disk
TRON/TROFF

As an aid in debugging, the TRON
statement (executed in either the
direct or indirect mode) enables a
trace flag that prints each line
number of the program as it is
executed. The numbers are enclosed
in square brackets. The trace flag
is disabled with the TROFF or NEW
command.

10 CLS

20 LOCATE 10, 5
30 PRINT "TEST"
RUN

The screen is cleared before the
following is displayed:

[10]
[20] TEST

Ok

4.1.2

4.1.2.1

Purpose

Yersion
Format

Remarks

Example

Functions, except I1/0
ABS

Return the absolute value of an
expression.

Cassette, Disk
ABS (X)
X may be any numeric expression.

The absolute value of a number is
always positive or zero.

PRINT ABS (-5 * . 325)
1.625
Ok

129

4.1.2.2 ASC

Purpose : Return the ASCII code for the first
character of a string.

Version : Cassette, Disk
Formatl : ASC (X$)
Remarks ¢ The result of the ASC function is a

numerical value that is the ASCII
code of the first character of the
string X$. If X$ is null, an
"Illegal function call'" error is
returned.

The CHR$ function is the inverse of
the ASC function, and it convents the
ASCII code to a character.

Refer to Appendix E on "ASCII
Characater Code" for details.

Example : 10 X$ = "TEST"
20 PRINT ASC (X$)
RUN
84
Ok

This example shows that the ASCII
code for "T" is 84.

130

4.1.2.3

Purpose

Version
Format

Remarks

Example

ATN

: Return the arctangent of a numeric

expression in radians.

Cassette, Disk

: ATN (X)

: The expression X may be any numeric

type. The evaluation is always
performed in double precision.
Result lies in the range -Pi/2 to
Pi/2.

Convert radian to degree by
multiplying a factor of 180/Pi where
Pi = 3.141593

10 PI = 3.141593#

20 RAD = ATN (6/8)

30 DEG = RAD * 180/PI

40 PRINT "TAN(";

50 PRINT USING "###.##"; DEG;
60 PRINT ") = 6/8"

RUN

TAN (36.87) = 6/8

Ok

131

4.1.2.4

Purpose

Version
Format

Remarks

Example

132

BIN$

Return a string which represents the
binary value of the decimal argument.

Cassette, Disk
BIN$ (n)

n is a numeric expression in the
range -32768 to 65535. If n is not
an integer, its fractional portion is
truncated. If n is negative, the
two's complement form is used. That
is, BIN$(-n) is the same as BINS$
(65536 - n).

PRINT BIN$ (12)
1100
Ok

This example shows that the decimal
number 12 equals to a binary number
of 1100.

4.1.2.5 CDBL

Purpose : Convert a numeric expression to a
double precision number.

Yersion : Cassette, Disk
Format : CDBL
Remarks : X is a numeric expression.

Refer to CINT and CSNG functions for
converting numbers to integer and
single-precesion respectively.

Esxample : PRINT CDBL (34/7)
4.8571428571429
Ok

The quotient of 34/7 is given as a
double precision number.

133

4.1.2.6 CHR$

Purpose : To convert an ASCII code to its
character equivalent.

Version : Cassette, Disk
Format : CHR$ (I)
Remarks : I lies within the range of 0 to 255.

This function returns the one-
character string with ASCII code I.
CHR$ is usually used to send a
special character to the screen or
printer.

To convert a character back to its
ASCII code, use the ASC function.

Example : PRINT CHR$ (85)
U
Ok

This shows that the ASCII code for
character "U" is 85.

134

4.1.2.7 CINT

Purpose : Convert a numeric expression to an
integer.

Version : Cassette, Disk

Format : CINT (X)

Remarks : X may be any numeric expression,
lying within the range -32768 and
32767.

X is converted to an integer by
truncating the fractional portion.

Example : PRINT CINT (45.67)
45
Ok

The fractional portior of 45.67 is
truncated to give an integer.

135

4.1.2.8

Purpose

Version
Format

Remarks

Example

136

Cos

Return the cosine of a numeric
expression in radians.

Cassette, Disk

CoS (X)

: X is the angle whose cosine is going

to be calculated. X must be in
radians. To convert from degrees to
radians, multiply the latter by
Pi/180 where Pi = 3.14593.

The calculator of COS(X) is performed
in double precision.

PRINT COS (2)
-.4161468365472
Ok

4.1.2.9 GSNG

Purpose : Convert a numeric expression to a
single precision number.

Version : Cassette, Disk
Format : SNG (X)
Remarks : X is a numeric expression.

See the CINT and CDBL functions for
converting numbers to the integer and
double-precision value respectively.

Example : 10 A = 345.53454663
20 PRINT CSNG (A)
RUN

345,535
Ok

Line 20 converts A to a single
precision number.

137

4.1.2.10

Purpose

Version
Format

Remarks

Example

138

CSRLIN

Return the vertical coordinate of the
cursor.

Cassette, Disk
CSRLIN

The CSRLIN variable returns the
current line (row) position of the
cursor on the active page. The

value returned will lie in the range
1 to 25.

Refer to POS function for the columm
location of the cursor.

Refer to LOCATE statement to see how
to set the cursor line.

10 CLS

20 LOCATE 20, 5
30 A = POS (0)
40 B = CSRLIN

In this example, the cursor is moved
to the 20th row, the 5th column.
Then the cursor coordinates are
saved in the variables A and B.

4.1.2.11

Purpose

Version

Format

Remarks

ERL/ERR

Return the error code and line number
associated with an error.

Cassette, Disk

ERR
ERL

When an error handling subroutine is
entered, the variable ERR contains
the error code for the error, and the
variable ERL contains the line number
of the line in which the error was
detected. Usually these variables
are used in IF.....THEN statements to
direct program flow in the error trap
routine.

If ERL is tested in an IF.....THEN
statement, put the line number on the
right side of the relational
operator, like this:

IF ERL =< line number > THEN.....

The line number can then be modified
as RENUM command is executed.

If the statement that caused the
error was a direct mode statement,
ERL will contain 65535. To test
whether an error was a direct mode
statement, use IF 65535 = ERL
THEN..... Otherwise, use IF ERR =

< error code> THEN..... or IF ERL =
< line number> THEN.....

139

Example : | 10 ON ERROR GOTO 100

20 INPUT "NUMBER"; N

30 IF N 100 THEN ERROR 61

40 END

100 IF (ERR = 61) AND (ERL = 30)
THEN PRINT "TOO
LARGE": RESUME 20

NUMBER ? 789

TOO LARGE

NUMBER ? 7

Ok

In this example, an error trapping
routine is set up to check the input
number. The RESUME statement on

line 100 causes the program to return
to line 20 when error 61 occurs in
line 30.

140

4.1.2.12
Purpsoe
Version
Format

Remarks

Example

EXP

: Calculate the exponential function.
: Cassette, Disk
: EXP (X)

: X is a numeric expression. X must

be = 145.06286085862.

This function returns the
mathematical number e raised to the
Xth power. e is the base for natural
logarithm. If EXP overflows, the
"Overflow" error message is printed.

PRINT EXP (2)
7.38905609893
Ok

This example calculates e raised to
the second power.

141

4.1.2.13

Purpose

Version
Format

Remarks

Example

@

142

FIX

Truncate a numeric expression to an
integer.

Cassette, Disk
FIX (X)
X is a numeric expression.

FIX returns the integer part of X
with fraction truncated.

FIX (X) = SGN (X) *INT (ABS (X))
The major difference between the FIX

and CSGN is that FIX does not return
the next lower number for negative X.

10 PRINT "INT (-34.5) ='";
INT (-34.5)

20 PRINT "FIX (-34.5) =';
FIX (-34.5)

30 PRINT "SGN (-34.5) *INT
(ABS (-34.5))

RUN

INT (-34.5) = =35

FIX (-34.5) = =34

SGN (=34.5)%* INT

(ABS (-34.5)) = -34

Ok

Il

This example shows the difference
between INT and FIX functions.
FIX(X) is equivalent to SGN(X)* INT
(ABS(X)).

4.1.2.14

Purpose

Versions

Format

Remarks

Example

FRE

FRE returns the number of bytes in
memory not being used by BASIC.

Cassette, Disk

FRE (X)
FRE (X$)

Arguments to FRE are dummy arguments.

FRE (X) returns the number of bytes
in memory which can be used for BASIC
program, text file, machine language
program file, etc. FRE (X $) returns
the number of bytes in memory for
string space.

10
20
30
40
50
60
70
80
90

100
110
RUN
FRE
FRE
FRE
FRE
Ok

GOSUB 80

DIM A (100) : DIM A$ (100)
FOR I =1 TO 100

A(I) =T : A$ (I) = CHR$ (I)
NEXT

GOSUB 80
END
PRINT "FRE (0) =" FRE (0),

PRINT "FRE(" + CHR$ (34) +
CHR$ (34) +") = "FRE (" ")
PRINT
RETURN

(0) 29025
(n ") = 200
(0) = 27887
(n u) = 100

I~

This example shows that A(100), takes
up 1138 bytes and A$(100) takes up
100 bytes.

143

4.1.2.15

Purpose

Version
Format

Remarks

Example

144

HEX$

Return a string which represents the
hexadecimal value of the decimal
argument.

Cassette, Disk
HEX$ (n)

n is a numeric expression in the
range -32768 to 65535. If n is not
an integer, its fractional portion
is truncated. If n is negative, the
two's complement form is used. That
is, HEX$(-n) is the same as

HEX$ (65536-n).

PRINT HEX$(-32768), HEX$(65535)
8000 FFFF

OK

This example uses the HEX$ function
to figure the hexadecimal
representation for the two decimal
values which are entered.

4.1.2.16
Purpose
Version
Format

Remarks

Example

INKEY$

Read a character from the keyboard.
Cassette, Disk

INKEY $

Return either a one-character

string containing a character read
from the keyboard or a null string

if no key is pressed. No characters
will be echoed and all characters are
passed through to the program except
for CTRL-C, which terminates the
program.

10 PRINT "PRESS ANY KEY TO
CONTINUE"

20 A$ = INKEY$

30 IF A$ = " " THEN 20

40 CLS

This section of a program suspends
the program until any key on the
keyboard is pressed.

145

4.1.2.17

Purpose

Yersion
Format

Remarks

Example

146

INPUT$

Return a string of X characters,
read from the keyboard.

Cassette, Disk

INPUT$ (X)

X is the number of characters to

be read. No character will be echoed
and all characters are passed through
except CTRL-C, which terminates the
execution of the INPUT$ function.

10 PRINT "INPUT A STRING OF
TWELVE LETTERS"
20 X$ = INPUT $ (12)

30 IF X $ = " " THEN 20

40 PRINT

50 FOR I = 1 TO 12

60 PRINT TAB(I+10) MID$ (X$, I,
1)

70 NEXT

RUN

INPUT A STRING OF TWELVE LETTERS

Ok

Line 20 waits for the input via

keyboard of 12 characaters.

4.1.2.18 1INSTR

Purpose

Version
Format

Remarks

Example

Search for the first occurrence of
string Y$ in X$ and return the
position at which the match is found.
Optional offset I sets the position
for starting the search in X$.

Cassette, Disk
INSTR([I,]X$, Y$)

I must be in the range O to 255. X$,
Y$ may be string variables, string
expressions or string constants.

If1 LEN(X$) or if X$ is null or if
Y$ cannot be found or if X$ and Y$
are null, INSTR returns O. If only
Y$ is null, INSTR returns I or 1. X$
and Y$ may be string variables,
string expressions or string
lieterals.

In this example, four characters are
read from the keyboard in response to
the question.

10 A$ = "BEGINNING"

20 B$ = "IN"

30 PRINT INSTR (A$, B$); INSTR (5,
A$, B$)

RUN

4 7

Ok

This example searches for the string
"IN" within the string '""BEGINNING".
When the word "IN" is searched from
the first character, it is first
found at starting position 4; when
the search starts at position 5, it
is found at starting position 7.

147

4.1.2.19 1INT

Purpose

Yersion
Format

Remarks

Example

148

Return the largest integer that is
less than or equal to X.

Cassette, Disk
INT(X)

X is any numeric expression. See the
FIX and CINT functions as reference.

PRINT INT (45.6)
45
Ok

Since 45.6 = 45 + 0.6, 45 is the
largest integer that is less than
45.6.

PRINT INT(-45.6)
-46
Ok

Since -45.6 = -46 + 0.4, -46 is the
largest integer.

4.1.2.20 LEFT$

Purpose

Version
Format

Remarks

Example

Return a string comprising the
leftmost I characters of X$.

Cassette, Disk
LEFT$ (X$, I)

X$ is any string expression. I must
be in the range O to 255. It
specifies the number of characters
for the result.

If T is greater than total number of
characters in X$, the entire string
is returned. If I=0, a null string
(length = zero) is returned.

PRINT LEFT $ ("RAINDROP", 4)
RAIN
Ok

In this example, the LEFT$ function
extracts the first four characters
from the string '""RAINDROP'".

149

4.1.2.21 LEN

Purpose : Return the number of characters in
x$.

Version : Cassette, Disk

Format : LEN (X$)

Remarks : X$ is a string expression. Non

printing characters and blanks
are counted.

Example : PRINT LEN ("LONG ISLAND")
11
Ok

There are 11 characters in the
string "LONG ISLAND" for spacing is
counted as well.

150

4.1.2.22 LOG

Purpose ¢ Return the natural logarithm of X.
Version : Cassette, Disk

Format ¢ LOG(X)

Remarks : X must be greater than zero. The

natural logarithm is the logarithm to
the base e.

Example : PRINT LOG(3)
3.1354942159291
Ok

The natural logarithm of 3 is
3.1354942159291.

151

4.1.2.23 LPOS

Purpose : Return the current position of the
line printer head within the line
printer buffer.

Version ¢ Cassette, Disk
Format : LPOS (X)
Remarks ¢ X is a numeric expression which is

a dummy argument.

LPOS function does not necessarily
give the physical position of the
print head.

Example : | IF LPOS(0) 30 THEN LPRINT CHR$
(13)

In this example, if the line length
is more than 30 characters long then
the ENTER character will be sent to
the printer so that it skips the next
line.

152

4.1.2.24

Purpose

Version
Format

RBemarks

Example

MID$

Return the requested part of a
given string.

Cassette, Disk
MID$ (X$,I[,J])

X$ is any string expression. I is an
integer expression in the range 1 to
255.

J is an integer expression in the
range O to 255.

Return a string of length J
characters from X$ beginning with the
Ith character. If J is omitted or if
there are fewer than J characters to
the right of the Ith character, all
right most characters beginning with
the Ith character are returned. If I
is larger than total number of
characters in X$, MID$ returns a null
string.

X$ = "INTERAGCTION"
Ok

PRINT MID$ (X$, 6, 3)
ACT

Ok

The second command prints a string
of 3 characters length, starting from
the 6th character of X$.

153

4.1.2.25

Purpose

Version
Format

Remarks

Exanple

154

OCT$

Return a string which represents the
octal value of the decimal argument.

Cassette, Disk
OCT$(n)

n is a numeric expression in the
range -32768 to 65535. If n is
negative, the two's complement form
is used. That is OCT$ (-n) 1is the
same as OCT$ (65536-n).

PRINT OCT$ (-32768), OCT$ (65535)
100000 177777
Ok

The octal value for -32768 is 100000
and that for 65535 is 177777.

4.1.2.26 PEEK

Return the byte read from the
indicated memory position.

Cassette, Disk
Format . PEEK (1)

Remarks : I is a numeric expression in the
range -32768 to 65535.

PEEK is the complementary function
to the POKE statement.

10 POKE &H9C4O, 5
20 PRINT PEEK(&H9C40); PEEK
(&0116100) ;
PEEK (&B1001110001000000)
RUN
5 5 5
ok

This example shows how a byte being
put in a memory location, can be
retrieved by PEEK command.

Line 20 reads the byte from memory
location 9C40 (in hexadecimal)

155

4.1.2.27

Purpose

YVersion

Format

Remarks :

Example

156

POS

Return the current horizontal cursor
position.

Cassette, Disk

POS (I)

I is a dummy numeric argument. The
left most position is O. Refer to

CSRLIN function for the row location
of the cursor.

IF POS(0) > 30 THEN PRINT CHR$
(13)

If the cursor is beyond position 30
on the screen when this statement

is executed, the cursor will move to
the beginning of the next line.

4.1.2.28 RIGHT$

Purpose : Return the right most I characters of
string X$.

Yevreion : Casette, Disk

Format : RIGHT $ (X$, I)

Bemavks : I must be in the range O to 255.

It specifies the number of characters
for the result.

If I equals to number of characters
in X$, the whole string is returned.
If I equals to zero, a null string
is returned.

Example : 10 X$ = "FOREVER"
20 PRINT RIGHT$ (X$, &)
RUN
EVER
Ok

The right most four characters of X$
are returned.

157

4.1.2.29

Purpose

158

RND

Return a random number between O and
1.

Cassette, Disk
RND(X)

X is a numeric expression which
affects the returned value. The same
sequence of random number is
generated each time the program is
run. To generate a different
sequence, use a different value for X
each time. If X< O , the random
generator is reseeded for any given
X. X=0 repeats the last number
generated. X < 0 generate the next
random number in the sequence.

10 FOR I = 1 TO 2

20 PRINT RND (2);

30 NEXT

40 PRINT: PRINT RND (O)

50 FOR I =1 TO 2

60 PRINT RND(-2);

70 NEXT

RUN
.59521943994623
.10658628050158
.10658628050158
.94389820420821
.94389820420821

Ok

The first row shows two random
numbers, generated using a positive
X.

In line 40, RND is called with an
argument of zero, so the number

generated on the second row is the
same as the preceding number.

In line 60, a negative number is
used to reseed the random number
generator. The random numbers
produced after this seeding are in
the second row of results.

159

4.1.2.30

Yersion

Format

Remavks

160

SGN

Return the sign of X.
Cassette, Disk

SGN(X)

X is any numeric expression.
For X > 0, it returns 1.

For X = 0, it returns O.
For X< 0, it returns -1.

ON SGN(X) + 2 GOTO 100, 200, 300

This statement directs the program
branch to 100 if X is negative 200
if X is zero and 300 if X is
positive.

4.1.2.31 SIN

Purpose : Return the sine of X in radians.
Version : Cassette, Disk

Format . SIN(X)

Remarks : X is an angle in radians. To convert

degrees to radians, multiply by
Pi/180, where Pi=3.141593. SIN(X) is
calculated to double precision.

Example : PRINT SIN(O)
0
Ok

161

4.1.2.32 SPACE$

Purpose

Yersion

Format

Remarks

162

Return the string of spaces of length
X.

Cassette, Disk

SPACE$ (X)

The expression X discards the
fractional portion and must be in the

range O to 255.
Refer also to SPC function.

10 PRINT " "
20 FOR I = 1 TO 5
30 X$ = SPACE$ (I)
40 PRINT X$: "L
50 NEXT

RUN

Ok

This example uses the SPACE$ function
to print the character "L" on a

line preceded by I spaces. Notice
BASIC puts a space in front of
character '"L'".

4.1.2.33 SPC

Purpose ¢ Print I blanks on the screen.

Cassette, Disk
Formeat : SPC (I)

Remaris : I must be in the range O to 255. SPC
may only be used with PRINT and
LPRINT statements. The SPC function
has implied semicolon after it.

PRINT 'MAGNETIC'" SPC(5) "FIELD"
MAGNETIC FIELD
Ok

Notice there are five spaces between
"MAGNETIC" and "FIELD".

163

4.1.2.34 SQR

Purpose : Return the square root.

VYersion : GCassette, Disk

Format : SQR(X)

Remarks : X must be greater than or equal to

zero. This function returns the
square root of X.

Exzample : PRINT SQR (25)
5
Ok

This example calculates the square
root of 25.

164

4.1.2.35

Purpose

Version
Format

Remarks

STR$

Return a string representation of the
value of X.

Cassette, Disk

STR$(X)

X is any numeric expression. If X is
positive, the string returned by STR$

contains a leading blank. The VAL
function is complementary to STR$.

PRINT STR$ (8%*7); LEN (STR$ (8%*7))
56 3
Ok

Eight times seven gives fifty-six.
STR$ then converts the digits in the
number to a string. Notice that
there is a leading space in the
returned string.

165

4.1.2.36

ol

R
5

¢

Purpose

Yersion

Format

Bemarks

Example

166

STRING$

Return a string of length I whose
characters all have ASCII code J or
the first character of the string X$.

Cassette, Disk

STRING $ (I, J)
STRING $ (I, X$)

I, J are in the range O to 255. X$
is any string expression.

10 X$ "FLUTE"

20 Y$ STRING $ (5, 42)

30 PRINT Y$ + "PU" + STRING $ (2,
X$) + Y$

RUN

Yedkdedede PUFF ek

Ok

Il

On line 20, a string consisting of
five asterisks is assigned to Y$. On
line 30, STRING $ (2, X$) extracts
the first character from X$ and
repeats the latter twice to form
another string.

4.1.2.37 TAB

Purpose
Vevsion

Example

Space to position I on the console.
Cassette, Disk
TAB(I)

I is a numeric expression in the
range O to 255.

If the current print position is
already beyond space I, TAB does
nothing. Space O is the left most
position, and the right most position
is the width minus one. TAB may only
be used with PRINT and LPRINT
statements.

10 A$ = "NEW": B= '"GENERATION"
20 PRINT A$ TAB (10) B$
30 PRINT A$ SPC (7) B$

RUN

NEW GENERAT ION
NEW GENERATION
Ok

Line 20 commands printing of B$ at
the 10th column. Notice the same
effect is produced by using SPC
function on line 30.

167

4.1.2.38
Purpose
Version
Format

Remarks

Example

168

TAN

Return the tangent of X in radians.
Cassette, Disk
TAN(X)

X is the angle in radians. To
convert degrees to radians, multiply
by Pi/180, where Pi = 3.141593.
TAN(X) is calculated to double
precision. If TAN overflows, an
"Overflow" error will occur.

PRINT TAN(O)
0
Ok

4.1.2.39

Purpose

Yersion
Format

Remarks

Ewample

USR

Call the user's assembly language
subroutine with the argument X.

Cassette, Disk
USR [digit 1 X

digit is in the range O to 9 and
corresponds to the digit supplied
with the DEFUSR statement for that
routine. If digit 1is omitted,
USRO is assumed. X is any numeric
expression of the argument to the
machine language subroutine.

10 DEF USRO = &HFO00
20 C = USRO (B/2)
30 D = USRO (B/3)

li

The function USRO is defined on line
10. Line 20 calls the functions USRO
with the argument B/2 while line 30
calls USRO again, with the argument
B/3.

169

4.1.2.40 VAL

Purnose : Return the numeric value of a string.
Version : Cassette, Disk
Format : VAL (X$)

X$ is a string expression.

The VAL function returns the
numeric value of a string, also
strips leading blanks, tabs and
linefeeds from the argument string.

If the first character of X$ is not
numeric, then VAL(X$) will return O.

Refer to STR$ function for numeric to
string conversion.

Example PRINT VAL ("420 BOAR LANE")
420
Ok

The VAL function returns only the
numeric value (420) from a string
Both the leading space and the

trailing characters are stripped.

170

4.1.2.41

VARPTR

Return the address in memory of the
variable or file control block.

Cassette, Disk

VARPTR (< variable name)
VARPTR (# < filenumber >)

< variable name > is the name of a
numeric or string variable or

array element. A value must be
assigned to variable name prior
to execution of VARPTR. Otherwise an
"Illegal function call" error
results.

< filenumber > is the number under
which the file was opened.

VARPTR is usually used to obtain the
address of a variable or array so

it may be passed to a machine
language subroutine. The address
returned will be an integer in the
range -32768 to 32767. 1If the
negative address is returned, add it
to 65536 to obtain the actual
address. If < filenumber > is
specified, VARPTR returns the
starting address of the file

control block.

A function call of the form VARPTR (A
(0)) is usually specified when
passing an array, so that the

lowest addressed element of the array
is returned. All simple variables
should be assigned before calling
VARPTR for an array because the
address of the array changes whenever
a new simple variable is assigned.

171

Example : 10 A$ = "SUPERLATIVE"
20 B = VARPTR(A$)

30 PRINT HEX$ (B)

RUN

8033

Ok

This example uses VARPTR to get the
data from a variable. In line 20, B
gets the address of the data. Then
it is converted to a hexadecimal
figure.

172

1st line of 4.2

4.2.1.1
Purpose
Version
Format

Remarks

Example

DEVICE SPECIFIC STATEMENTS AND
FUNCTIONS

4.2.1 Statements

BEEP

To generate a beep sound.
Cassette, Disk

BEEP

Exactly the same with the command

PRINT CHR$(7).
10 FOR T =1 TO 10
20 BEEP
30 NEXT
40 PRINT ' % % % *n
50 FORT =1 TO 10
60 PRINT CHR$(7)
70 NEXT

It beeps ten times before and after
the printout of a string of five
asterisks.

Both lines 20 and 60 produce
beeping sound.

173

Version

Format

6 v e B g
Remarks

174

BLOAD

To load a machine language program
from the specified device.

Cassette, Disk

BLOAD " < device descriptor >
[< filename >]" [, R],
[, < offset >]

The < device descriptor > can be one
of the followings : CAS: , 1: or 2:.

< filename > : Refer to section
3.13.1.2.2.

If "R" option is specified, after

the loading, program begins execution
automaticaly from the address which
is specified at BSAVE.

The loaded machine language program
will be stored at the memory location
which is specified at BSAVE. 1If

< offset > is specified, all
addresses which are specified at
BSAVE are offset by that value.

If the < filename > is omitted,
the next machine language program
file encoutered is loaded.

BLOAD "1 : SVFRMT", R

The file named '"SVFRMT" is loaded
from disk on drive 1 and is run.

BSAVE

To save a memory image at the
specified memory location to the
device.

Cassette, Disk

BSAVE " < device descriptor
[< filename >]'", < top adrs> ,
<end adrs > [, < execution adrs>]

The < device descriptor > can be one
of the followings: CAS: , 1: or 2:.
This may be omitted if the device is
cassette.

< top adrs > and < end adrs > are
the top address and the end address
of the area to be saved.

I1f < execution adrs > is omitted,
< top adrs> is regarded as
< execution adrsd.

Bsave is useful for saving
machine language program.

BSAVE '"'CAS: TEST'", &HAOOO, &HAFFF

The file "TEST" is saved on cassette
starting at address &H AOOO and
ending at &HAFFF.

175

4.2.1.4

el

urpose

Version

Format

Remarks

176

CIRCLE

To draw an ellipse with a center and
radius as indicated by the first of
its arguments.

Cassette, Disk

CIRCLE < coordinate specifier > ,
< radiusd[, < color >]

[, < start angle >]

[, <end angle>]

[, < aspect ratio >]

< coordinate specifier > specifies
the coordinate of the center of the
circle on the screen. For the detail
of <coordinate specifier», see the
description at PUT SPRITE statement.

The < color > defaults to foreground
color.

The < start angle D> and < end angle >
parameters are radian arguments
between O and 2*Pi which you specify
where drawing of the ellipse will
begin and end. If the start or end
angle is negative, the ellipse will
be connected to the center point with
a line, and the angles will be
treated as if they were positive.
Note that this is different from
adding 2*Pi.

The < aspect ratio > is the
height/width ratio of the ellipse.
The default is 1, assuming a monitor
screen ratio of 4/3. If the < aspect
ratio D> is less than 1, the radius
specifies y pixels. 1If the ratio is
larger than 1, the radius specifies x
pixels.

e

&

wample

10 SCREEN 1
20 CIRCLE (128, 96), 80, 15
30 GOTO 30

A white circle centered at (128,
96) with a radius of 80 is
displayed.

Now change line 20 to:
20 CIRCLE (128, 96), 80, 15, O,
3.14
Run the program. Only the upper
half circle is drawn.

Change line 20 to:
20 CIRCLE (128, 96), 80, 15,,,2
Then,
20 CIRCLE (128, 96), 80,
15,,,.5

These will draw ellipses. The three
commas after the number 15 are
necessary to inform the computer that
the starting and ending points of the
shape to be drawn are not specified.
It assumes the complete shape to be
drawn.

177

4.2.1.5

Purpose
Version
Pormal

Remarks

178

..

CLOAD

To load a BASIC ogram file from the
cassette motor.

Cassette
CLOAD [" < filename > "]

<filename > is a string of
characters, six being the maximum.

CLOAD closes all open files and
deletes the current program from
memory. If the < filename > is
omitted, the next program file
encountered on the tape is loaded.
For all cassette read operations,
baud rate is determined
automatically.

CLOAD "'INTRO"
The file named '"INTRO'" is read from
the cassette onto the computer.

4.2.1.6

5 PR
Fuyrpose

Format

Remarks

..

CLOAD?

To verify a BASIC program on cassette
motor with one in memory.

Cassette
CLOAD? [" < filename> ']

< filename» is a string of
characters, six being the maximum.

If the program loaded is different
from the one in memory the message
"verify error" is displayed.

CLOAD? [" < filename D "]

To verify a BASIC program on cassette
motor with one currently in memory.

179

4.2.1.7

Purpose

Version

Format

Remarks

Example

180

CLOSE

To close the channel and release the
buffer associated with it.

Cassette, Disk

CLOSE [[#] < filenumber >
[, < filenumber>]]

<filenumber>- is the number used
on the OPEN statement. As CLOSE 1is
executed, any association between a
file and device stops. Subsequent
I/0 operations specifying that file
number will be invalid. The file or
device should be OPEN again.

A CLOSE with no file number
specified causes all devices and
files that have been opened to be
closed.

10 OPEN "1 : DEMO'" FOR OUTPUT AS #

1
20 FOR I = 0 TO 50
30 PRINT # 1, I
40 NEXT I

50 CLOSE # 1

On line 50, the file is closed after
data has been written to it.

4.2.1.8

Purpose

Version

CLS

To clear the screen.
Cassette, Disk
CLS

Erase the current active screen page.
The CLS statement returns the cursor
to home position in the upper left-
hand corner of the screen.

The SCREEN statement will force a
screen clear if the resultant screen
mode created is different from the
mode currently in force. So is WIDTH
statements.

The screen may also be cleared

by depressing the CLS or CTRL and L
keys simultaneously. Or else use
PRINT CHR$ (12).

181

182

COLOR

Set the colors for the foreground,
background and border screen.

Cassette, Disk

COLOR [< foreground color >]
[, < background color>]
[, < border color >]

Each character on the screen is
composed of two parts: foreground
and background. The foreground

is the character itself. The
background is the '"box'" around the
character. Most TV or monitors have
an overscan area outside the area for
characters. This is known as border
screen.

The arguments lie in the range O to
15. Default is 15,4,5. The sixteen
colors are:

transparent
black

medium green
light green
dark blue
light blue
dark red
cyan

medium red
light red

10 dark yellow
11 light yellow
12 dark green
13 magenta

14 gray

15 white

WCoONOULP~WwDNDRFLO

10 SCREEN 2

20 FOR I = 0 TO 7

30 CLS

40 COLOR I, I + 8

5 FOR T = 1 TO 5

60 LOCATE 10, 40 : PRINT '"COLOR"

70 LOCATE 5, 80 : PRINT I '"," I +
8

80 NEXT T, I

90 COLOR 15, 4, 5

Both the background and character
colors change as the above program is
executed. The respective color
number are printed on the screen.

Line 40 sets the foreground color,
i.e., color of text, to be I and

the background to be I + 8.

Line 90 sets the foreground color as
white(15), while the background
color as dark blue(4) and the border
color as light blue (5).

183

4.2.1.10

Purpose :

Version :

Format

Remarks

Ewample

184

CSAVE

To save a BASIC program file to
the cassette tape.

Cassette
CSAVE " < filename > "

<filename > is the name for the
program to be saved on cassette. The
maximum number of characters is six.

BASIC saves the file in a compressed
binary(tokenized) format. ASGCII
files take up more space, but some
types of access require that file to
be in ASCII format. Programs saved
in ASCII may be read as BASIC data
files and text files. In that case,
use the SAVE command.

CSAVE '"DEMO"

The program currently in memory is
named "DEMO" and is saved on
cassette.

4.2.1.11

Purpose

DRAW

To draw figure according to the
graphic macro language.

Cassette, Disk
DRAW < string expression :>

The graphic macro language commands
are contained in the string
expression string. The string
defines an object, which is drawn
when BASIC executes the DRAW
statement. During execution, BASIC
examines the value of string and
interprets single letter commands
from the contents of the string.
These commands are detailed below.

The following movement commands
begin movement from the last point
referenced. After each command, the
last point referenced is the last
point the command draws.

Move up

Move down

Move left

Move right

Move diagonally
up and right

mR oo a
=8 38323

F n Move diagonally
down and right

G n Move diagonally
down and left

H n Move diagonally
up and left

n in each of the preceding
commands indicates the distance to
move. The number of points moved is
n times the scaling factor (set by
the S command).

185

186

M <x,y >

Move absolute or
relative.dis If x
has a plus sign (+)
or a minus sign (-)
in front of it, it
is relative.
Otherwise, it is
absolute.

The aspect ratio of the screen is 1.
So 8 horizontal points are equal in
length to 8 verrtical points.

The following two prefix commands may
precede any of the above movement

commands .

B Move, but plot no points.

N Move,

but return to the

original position when
finished.

The following commands are also

available:

A <n>

Turn an angle. n may
be O or 25 0 for O
and 2 for 180 .

0]

180

c <n)> Set color n. n may
range O to 15.

s <n D Set scale factor. n
may range from O to
255. n divided by 4
is the scale factor.
For example, if n=1,
then the scale factor
is 1/4. The scale
factor multiplied by
the distance given
with the U,D,L,R,E,F,
G,H relative to M
command gives the
actual distance
moved. The default
value is 0, which
means no-scaling
i.e., same as S4.

X < string variable D>
Execute a substring.
This allows you to
execute a second
string from within a
string.

In all of these commands, the n, x,
or y argument can be a constant like
123 or it can be expressed as'" =
variable ;" where variable is
the name of a numeric variable. The
semicolon (;) is required when you
use a variable in this way, or in the
X command. Otherwise, a semicolon is
optional between commands. Spaces
are ignored in string. For example,
you could use variables in a move
command this way:

M+ = X1;, = X2;

187

The X command can be a very useful
part of DRAW, because you can define
a part of an object separated from
the entire object and also can use X
to draw a string of commands more
than 255 characters long.

Example : 10 COLOR, 1, 1 : SCREEN 1

20 DRAW '"'C10 BM 100, 70 E15 R30
G15 L30 D30 R30 u30"

30 DRAW '"'S4C8 BM 130, 100 E15
u3o"

40 GOTO 40

A cube is drawn in two brushes, one
in yellow and the other in red,
starting at (100, 70) and (130, 100)
respectively. Scale factor S4 needs
not be specified since the default
is 4. (Compare the effect of line 20
and line 30.) Replace lines 20 and
30 by the following line.
20 DRAW "'C8 BM 100, 70 E15 R30
D30 G15 L30 U30 R30 NE15 D30"

Remember to delete line 30 before
executing the modified program.

10 COLOR 7, 1 : SCREEN 1

20 DRAW "S4BM 100, 100 E50 F50
G50 H50"

30 DRAW "S2BM + 25, 25 U50 R50
D50 L50"

40 GOTO 40

A smaller square as drawn per line
30 is enclosed by a larger square
as drawn per line 20.

188

10 SCREEN 1 : COLOR 7, 1

20 DRAW "BM 100, 50 F30 L60O
E30"

30 X=-40 : Y=40

40 DRAW "BM + = X;, = Y; R80
F30 L140 E30"

50 GOTO 50

A triangle and a trapezium, seperated
from each other are displayed. Line
40 causes the trapezium to be drawn
at 40 units left and 40 units below
the last referenced point 1i.e.,
(100, 50), which needs to be traced
back from line 20.

10 SCREEN 1

20 T$ = "L20 D20 R20;"

30 DRAW "BM 100, 100 AO x T$;"
40 GOTO 40

In this example, a "['" shape is
displayed.

Line 30 reads like this : starting
at point (100,100) at an angle of
zero degree to the vertical, draw
the substring (T$). The effect of
angle setting can be seen if you
change "AO" on line 30 to "A2",

189

4.2.1.12 GET

Purpose : To read a record from a random disk
file into a random buffer.

Version ¢ Disk
Format : GET[#] < filenumber > [, <record
number >]

< filenumber > is the number under
Remarks : which the file was OPENed. If

< record number > is omitted, thke

next record (after the last GET) is

read into the buffer. The largest

possible record number is 32767.

After a GET statement, INPUT # and
LINE INPUT # may be done to read
characters from the random file
buffer.

10 INPUT "NAME:" ; NAME$

20 INPUT "OCCUPATION:'"; JOB$

30 OPEN '"1:RECORD" AS#1

40 FIELD #1, 20 AS NAME$, 20 AS JOB$
50 LSET N§ = NAME$

Example : 60 LSET J$ = JOB$

70 PUT #1, 18

80 GET #1, 18

90 CLOSE #1

A random file named "RECORD'" under
the filenumber (#1) is created per
lines 30 to 70. Line 80 moves the
desired record (record # 18) into
the random buffer.

190

4.2.1.13

Purpose

Version

Fromat

Remarks

Example

GET (graphics)

To read points from an area of the
screen.

Cassette, Disk

GET <array name >
GET (x1, yl) - (x2, y2), <array
name >

(x1, y1), (x2, y2) are the
coordinates of the opposite
corners of the screen area.

GET reads the colors of the points
in the specified screen area into
the array. The rectangular area
of the screen has its opposite
corners as points (x1, yl) and
(x2, y2).

The array only holds the image in
the specified area without concern
as to precision but it must be in
numeric form.

10 SCREEN 1

20 DEFINT C

30 CIRCLE (128, 96), 8

40 LINE (128, 164) - (128, 118)
50 DRAW ''BM 128, 104 G15"

60 DRAW ''BM 128, 104 F15"

70 DRAW "BM 128, 118 G15"

80 DRAW "BM 128, 118 F15"

90 DIM C (30, 35)

100 GET (118, 88) - (138, 128), C
110 PUT (20, 16), C, PSET

Line 30 through 80 represent the
figure drawn. Line 90 creates a

191

192

rectangular array large enough to
hold it. Line 100 GETs the
information that follows the word
GET and places it in container '"C".
This line will take the two sets of
points that are specified, which
had they been drawn would have
created a rectangle and place this
picture in "C'". Line 110 simply
PUTs the contents of "C" at
location (20, 16).

4.,2.1.14 INPUT #

Purpose : To read data items from the specified
channel and assign them to program
variables.

Version : Cassette, Disk

Format : INPUT # < filenumber> ,

< variable list>
Remarks < filenumber> is the number used
when the file was opened for input.
<variable list> 1is the name of a
variable that will have an item in
the file assigned to it. It may be a
string or numeric variable, or an
array element. The type of data in
the file must match the type
specified by the < variable list> .
Unlike the INPUT statement, no
question mark is printed with INPUT #
statement.

The data items in the file should
appear just as they would if data
were being typed in response to an
INPUT statement. With numeric
values, leading spaces, enters and
line feeds are ignored. The first
character encountered which is not a
space, enter or line feed is assumed
to be start of a number. The number
terminates on a space, enter, line
feed or comma.

Also, if BASIC is scanning the data
for a string item, leading spaces,
enters and line feeds are ignored.
The first character encountered is
assumed to be the start of a string
item. If this first character is a
double-quotation mark ("), the string

193

Example

194

item will consist of all characters
characters read between the first
quotation mark and the second. Thus,
a quoted string may not contain a
quotation mark as a character.

If the first character of the string
is not a quotation mark, the string
is an unquoted string, and will
terminate on a comma, enter, line
feed or after 255 characters have
been read. If end of file 1is reached
when a numeric or string item is
being INPUT, the item is terminated.

10 OPEN "1 = DEMO" FOR OUTPUT AS # 1
20 A=10 : B=20 : C=30

30 PRINT # 1, A; B; C

40 CLOSE # 1

50 OPEN "1 : DEMO'" FOR INPUT AS # 1
60 INPUT # 1, A, B, C

70 CLOSE # 1

This program will save the numbers
10, 20 and 30 on the disk then read
them.

On line 50 the computer is instructed
to reopen the file. Notice that the
filenumber is # 1.

Line 60 causes the computer to read
the information back into the
computer.

4.2.1.15

Purpose

Version

Format

Remarks

Example

INPUT$

To return a string of n characters,
read from the keyboard or from a
specified file.

Cassette, Disk
INPUT$ (<n > , [#] <filenumber >)

<n> 1is the number of characters to
be read from the file.

< filenumber > is the number which
the file was OPENed.

If the keyboard is used for input, no
characters will be displayed on the
screen. All characters including
control characters are passed through
except CTRL + STOP. The latter is
used to interrupt the execution.
Response to INPUT$ from the keyboard
need not press ENTER.

10 PRINT "IS THE STATEMENT
CORRECT?"

20 z$ = INPUT$(1)

30 IF Z$ = "Y" OR Z$ = '"y" THEN
PRINT "ARE YOU SURE?"

40 IF Z$ = "N" OR Z$ = ''n' THEN
PRINT "THAT'S CORRECT!' ELSE
PRINT '"COME ON, MAKE UP YOUR
MIND!"

Line 20 collects one single character
input via the keyboard.

195

4.2.1.16

Purpose

Version
Format

Bemarks

Example

196

INTERVAL ON/OFF/STOP

To activate/deactivate trapping of
time interval in a BASIC program.

Cassette, Disk
INTERVAL ON/OFF/STOP

An INTERVAL ON statement must be
executed to activate trapping of
time interval. After INTERVAL ON
statement, if a line number is
specified in the ON INTERVAL GOSUB
statement then every time BASIC
starts a new statement it will check
the time interval and accordingly
perform a GOSUB to the line number
specified in the ON INTERVAL GOSUB
statement.

If an INTERVAL OFF statement has
been executed, no trapping takes
place and the event is not
remembered even if it does take
place.

If an INTERVAL STOP statement has
been executed, no trapping will take
place, but if the timer interrupt
occurs, this is remembered so an
immediate trap will take place when
INTERVAL ON is executed.

Refer to ON INTERVAL GOSUB.

4.2.1.17

Purpose

VYersion

Format

Remarks

KEY

To set each function key to
automatically type any sequence
of characters.

Cassette, Disk

KEY < function key #> ,
< string expression >

< function key #> 1is the key number
— an unsigned integer in the range 1
to 10.

< string expression > is the key
assignment text - any valid string
expression within 15 characters. If
the string is longer than 15
characters, only the first 15
characters are assigned.

The defined string expression is
input as a BASIC command, when the
assigned function key is depressed.

To disable the function key as a
soft key, assign a null string to the
latter.

Assign the string "PRINT TIME$"
and ENTER to function key #1. Using
the following command:

KEY 1, "PRINT TIME$" + CHR$(13)
Another way to specify a function
key, without including the ENTER

command may be:

A$ = '"NUMBER"
KEY 2, A$

197

To disable a function key, use the
following command:

KEY 1, " »

198

4.2.1.18

Purpose

Version
Format

Remarks

Example

..

KEY LIST

To list the contents of all function
keys.

Cassette, Disk
KEY LIST

This command lists all ten function
key values on the screen. All 15
characters are assigned. Position in
the list reflects the key
assignments. Note that control
characters assigned to a function key
is converted to spaces.

KEY LIST

color auto

goto list

run color 15, 4, 5
cload" cont

list run

Ok

Initially, the function keys are
assigned the above values.

199

4.2.1.19

Purpose

Version

Format

Remarks

Example

200

KEY ON/OFF/STOP

To activate/deactivate trapping of
the specified function key in a BASIC
program.

Cassette, Disk

KEY (< function key #>)
ON/OFF/STOP

< function key #> is a numeric
expression in the range 1 to 14. A
KEY(n)ON statement must be executed
to activate trapping of function key.
After KEY(n)ON statement, if a line
number is specified in the ON KEY
GOSUB statement then every time BASIC
starts a new statement it will check
to see if the specified key was
pressed. If so it will perform a
GOSUB to the line number specified in
the ON KEY GOSUB statement.

If a KEY(n)OFF statement has been
executed, no trapping takes place
and the event is not embered even if
it does take place.

If a KEY(n)STOP statement has been
executed, no trapping will take
place, but if the specified key is
pressed this is remembered so an
immediate trap will take place when
KEY(n)ON is executed.

KEY(n)ON has no effect on the
assigned text of the function key
displayed at the bottom of the
screen.

Refer to ON KEY GOSUB.

4.2.1.20 LINE

Purpose

Version

Format

Remarks

To draw line connecting the two
specified coordinates. For the
detail of the coordinate

specifier , see description at PUT
SPRITE statement.

Cassette, Disk

LINE [< coordinate specifier>] -
<coordinate specifier >

[a <color >] [a B/BF]

If the starting pair of coordinates
are omitted, a line will be drawn
from the last reference point to the
position specified by the second
pair of coordinates. The default is
(0,0). The second pair of
coordinates can be written in
relative form, by adding a specified
offset to the coordinates of the
first point. For example, LINE (100,
100) - STEP (20, -20) produces the
same effect as LINE (100, 100) -
(120, 80).

"B" renders a rectangle to be drawn,
with line specified by the pair of
coordinates as its diagonal.

"BF" signifies the box thus drawn as

in the "B" mode to be painted in the
color same as the border of the box.

201

Example : 10 SCREEN 1

20 LINE (72, 72) - (200, 168), 15,
B

30 LINE (72, 72) - (136, 36)

40 LINE - (200, 72)

50 LINE - (72, 72)

60 LINE (120, 108) - (152, 168),,
BF

70 GOTO 70

Line 40 commands a line to be drawn
from the last referenced point (136,
36) to (200, 72). Similar for line
50.

202

4.2.1.21 LINE INPUT#

Purpose : To read an entire line (up to 254
characters), without delimiters,
from a sequential file to a string
variable.

Version : Cassette, Disk

Format : LINE INPUT# < filenumber) ,
< string variable >

Remarks . < filenumber>» 1is the number which
the file was OPENed.

< string variable > is the name of
a string variable to which the line
will be assigned.

LINE INPUT# reads all charactes in
the sequential file up to an enter.
It then skips over the enter/line
feed sequence, and the next LINE
INPUT# reads all characters up to the
next enter. If a line feed/enter
sequence is encountered, it is
preserved. That is, the line
feed/enter characters are returned as
part of the string.

LINE INPUT# is especially useful if
each line of a file has been broken
into fields, or if a BASIC program
saved in ASCII mode is being read as
data by another program.

203

P
58
@
=

=
-
e

10 OPEN '1: DEMO" FOR OUTPUT AS # 1
20 A$ = "THIS IS A DEMO"

30 B$ = "APPENDIX"

40 PRINT # 1, A$, B$

50 CLOSE # 1

60 OPEN '1: DEMO" FOR INPUT AS # 1
70 LINE INPUT # 1, A$

80 CLOSE # 1

This program writes the message
contained on lines 20 and 30 on the
disk, then reads it back. The
command LINE INPUT# reads an entire
line up to 254 characters from a
sequential file to a string variable.

204

4.2.1.22

Purpose

Yersion

Format

Remarks

LOAD

To load a BASIC program from the
device.

Cassette, Disk

LOAD " [< device descriptor >]
(< filename >]" [,R]

< device descriptor» : For cassette,
this may be '"CAS:" or just omit this
specifier. For disk, this may be
"1:" or "2:", depending on the disk
drive in use.

< filename > Refer to section
3.13.1.2

LOAD closes all open files and
deletes the current program from
memory. However, with the "R"
options all data files remain OPEN
and execute the loaded program.

If the < filename > is omitted, the
next program, which should be an
ASCII file, encounted on the tape is
loaded.

If the "R" option is included, the
program is run after it is loaded.

In this case, all open data files are
kept open. Thus LOAD with the '"R"
option may be used to chain several
programs or segments of the same
program. Information may be passed
between the programs using data
files. This is equivalent to RUN.

205

Example : LOAD "NOMIS"
Load the program ''NOMIS'" but does not
run it.

LOAD "NOMIS", R

Load and run the program '"'NOMIS"
residing on cassette.

206

4.2.1.23

Purpose

Version

Format

Remarks

Exanmple

LOCATE

To locate character position for
PRINT.

Cassette, Disk

LOCATE [<x>][, <y >]

[, < cursor display switch

< x > is a numeric expression in the
range 1 to 40 or 1 to 80, depending
upon screen width.

<y > is a numeric expression in the
range 1 to 25. It indicates the
screen line number where you want to
place the cursor.

< cursor display switch > is a value
indicating whether the cursor is
visible or not. A zero (0) indicates
off, one (1) indicates on. Valid in
the text mode.

10 CLS

20 LOCATE 5,5

30 PRINT "BALANCE SHEET"
40 LOCATE 5, 10, 1

50 PRINT ''AMOUNT"

60 GOTO 60

This example prints out ''BALANCE
SHEET" and "AMOUNT" in two seperate
lines.

Line 20 locates the PRINT position

to the fifth row and the fifth
column. Line 40 locates the PRINT
position to the tenth row and the
fifth column. The cursor prompt is
displayed on the eleventh row and the
first column.

207

4.2.1.24

Purpose

Yersion

Format

Bemarks

Example

208

LSET AND RSET

To move data from memory to a
random file buffer in preparation
for a PUT statement.

Disk

LSET < string variable >
expression >

RSET < string variable > = <string
expression >

< string

1

If < string expression > requires
fewer bytes than were FIELDed to
<string variable > , LSET left-
justified the string. Spaces are
used to pad the extra positions.

If the string is too long for the
field, characters are dropped from
the right. Numeric values must be
converted to strings before they
are LSET or RSET. See the MKI$,
MKS$, MKD$ functions.

50 LSET A$ = MKS$(AMT)
60 LSET D$ = DESC$

The LSET commands in lines 50 and
60 move the data from the MKS$(AMT)
and DES$ and place it into the
string variables, A$ and D$ which
are in the random buffer.

LSET or RSET may also be used
within a non-fielded string
variable to left-justify or right
—justify a string in a given field.

110 A$ = SPACE$(20)
120 REST A$ = N$

The above two lines right-justify
the string N$ in a 20-character
field. This can be very handy for
formatting printed output.

209

4.2.1.25

Purpose

Version
Format

Remarks

Example

210

MAXFILES

To specify the maximum number of
files opened at a time.

Cassette, Disk

MAXFILES = < expression >

< expression > can be in the range
of O to 15. When "MAXFILES=0" is
executed, only SAVE and LOAD can be

performed.

The default value asssigned is 1.

10 MAXFILES = 3

20 OPEN "CAS:INDEX" FOR INPUT AS
#1

30 OPEN "CRT:CHAP 1" As # 2

40 OPEN "KYBD:CHAP 2" As # 3

Line 10 specifies the maximum number
of files opened be 3.

4.2.1.26

Purpose

Version

Format

Remarks

Example

MERGE

To merge the lines from an ASCII
program file into the program
currently in memory.

Cassette, Disk

MERGE " <device descriptor>
[< filename>]"

<device descriptor> : This may be
"CAS:", "1:" or "2:". If this is
omitted, the device descriptor is
cassette.

< filename > : Refer to section
3.13.1.2.2.

If any lines in the file being

merged have the same line number as lines
in the program in memory, the lines from
the file will replace the corresponding
lines in memory.

After the MERGE command, the merged
program resides in memory, and BASIC
returns to command level.

If the < filename > is omitted, the next
program file, which should be ASCII file,
encountered on the tape is MERGEd.

MERGE "1: TEST"
This command merges the file named
"TEST" on diskette in drive 1 with
the program in memory.

The program "TEST" should be stored
as an ASCII file. The program line
numbers are merged with the line
numbers of the program that resided
in memory before the '"merge" was
performed.

211

Format

Remarks

212

.

MOTOR ON/OFF

To change the status of cassette
motor switch.

Cassette, Disk

MOTOR ON/OFF

When no argument is given, flips the
motor switch. Otherwise, enables/
disables motor of cassette.

4.2.1.28

Purpose

Version

Format

Remarks

Ewample

ON INTERVAL GOSUB

To set up a line number for BASIC
to trap to at defined time interval.

Cassette, Disk

ON INTERVAL = <time interval >
GOSUB < 1line number >

Generate a timer interrupt at every
<time interval)> /60 seconds.

When the trap occurs an automatic
INTERVAL STOP is executed so receive
traps can never take place. The
RETURN from the trap routine will
automatically do an INTERVAL ON
unless an explicit INTERVAL OFF has
been performed inside the trap
routine.

Event trapping does not take place
when BASIC is not executing a
program. When an error trap
(resulting from an ON ERROR
statement) takes place this
automatically disables all traps
(including ERROR, STRIG, STOP,
SPRITE, INTERVAL and KEY).

10 ON INTERVAL = 60 GOSUB 100
20 INTERVAL OFF

30 FOR I =1 TO 100

40 PRINT I;

50 NEXT

60 INTERVAL ON

70 GOTO 70

100 BEEP : RETURN

After printing integers from 1 to
100, the computer beeps every second.

213

214

Line 10 directs the program flow to
line 100 every second. That is a
beep is sound every second.

However, the INTERVAL OFF command on
line 20 disables this trapping.
After printing 100 integers, the
INTERVAL ON command is executed.
Beep sound is heard.

4.2.1.29 ON KEY GOSUB

Purpose : To set up line numbers for BASIC
to trap to when the respective
function key is pressed.

VYersion : Cassette, Disk
Format : ON KEY GOSUB < list of line numbers >
Remavrks ¢ If the first line number which is

not O of an interrupt handling
routine is assigned in an ON KEY
GOSUB statement, a check will be
performed to see if the assigned key
is depressed each time BASIC executes
a statement. If the key is
depressed, BASIC will branch to the
routine with the assigned line
number.

When a trap occurs, an automatic
KEY(n) STOP is executed so receive
traps can never take place. The
RETURN from the trap routine will
automatically do a KEY(n) ON unless
an explicit KEY(n) OFF has been
performed inside the trap routine.

Event trapping does not take place
when BASIC is not executing a
program. When an error trap
(resulting from an ON ERROR
statement) takes place this
automatically disables all trapping
(including ERROR, STRIG, STOP,
SPRITE, INTERVAL and KEY).

215

o1
3

S

Example

216

10 ON KEY GOSUB 50, 90, 80
20 KEY (1) ON : KEY (2) ON : KEY

(3) ON
30 CLS
40 Cc =1

50 GCOLOR C

60 PRINT "¥';

70 GOTO 60

80 BEEP

90 C=0C+1

100 IF C = 16 THEN C = 1
110 RETURN 50

As the program is executed, press F1,
color of "*" remains the same as the
key has not been pressed. Press F2
will change color of "*'". Press F3,
color will be changed and a beep is
heard.

Change line 20 to 20 KEY(1) OFF :
KEY(2) OFF: KEY(3) OFF

Notice that the printout color does
not change even F2 or F3 is pressed.

4.2.1.30

Purpose

Version
Format

Remarks

ON SPRITE GOSUB

To set up a line number for BASIC
to trap to when the sprites coincide.

Cassette, Disk
ON SPRITE GOSUB < line number >

When the trap occurs an automatic
SPRITE STOP is executed so receive
traps can never take place. The
RETURN from the trap routine will
automatically do a SPRITE ON unless
an explicit SPRITE OFF has been
performed inside the trap routine.

Event trapping does not take place
when BASIC is not executing a
program. When an error trap
(resulting from an ON ERROR
statement) takes place this
automatically disables all trapping
(including ERROR, STRIG, STOP,
SPRITE, INTERVAL and KEY).

217

Example

218

10
20
30
40
50
60

70
80
90
100
110

120
130

140

150

160

ON SPRITE GOSUB 90

SCREEN 2, 2

A$ - n "

FOR I =1 TO 32
READ B$

A$ = A$ + CHR$

(VAL ("&H" + B$))

NEXT

SPRITE $ (0) = A$

PUT SPRITE O, (10, 10), 8, O
PUT SPRITE 1, (110, 85), 11,
0

PUT SPRITE 2, (220, 170), 6,
0

GOTO 120

DATA 03, OF, 1F, 39, 79, FF,
FF, FF

DATA 2A, 2A, 2A, 4A, LA, 52,
92, 92

DATA CO, FO, F8, 9C, 9E, FF,
FF, FF

DATA 54, 54, 54, 52, 52, G4A,
49, 49

Version

Format

Remarks

ON STOP GOSUB

To set up line numbers for BASIC to
trap to when the CTRL-STOP key are
pressed.

Cassette, Disk

ON STOP GOSUB < line number >

When the trap occurs an automatic
STOP is executed so receive traps can
never take place. The RETURN from
the trap routine will automatically
do a STOP ON unless an explicit STOP
OFF has been performed inside the
trap routine.

Event trapping does not take place
when BASIC is not executing a
program. When an error trap
(resulting from an ON ERROR
statement) takes place this
automatically disables all trapping
(including ERROR, STRIG, STOP,
SPRITE, INTERVAL and KEY).

10 CLS

20 ON STOP GOSUB 70

30 STOP ON

40 PRINT "x'";

50 GOTO 40

60 END

70 STOP OFF

80 PRINT : PRINT "END"
90 RETURN 60

On pressing CTRL-STOP, line 20
renders line 70 to be executed and
"END" will be printed without the
"A C" printout.

219

Delete lines 20, 30 and 60 and try
breaking the program by pressing
CTRL-STOP.

10 ON STOP GOSUB 40
20 STOP ON
30 GOTO 30
40 RETURN

To break this program, power off the
computer.

220

4.2.1.32

Purpose

Version

Format

Remarks

Example

ON STRIG GOSUB

To set up line numbers for BASIC to
trap to when the trigger button is
pressed.

Cassette, Disk

ON STRIG GOSUB list of line numbers
When the trap occurs an automatic
STRIG (n)STOP is executed so receive
traps can never take place. The
RETURN from the trap routine will
automatically do a STRIG(n)ON unless
an explicit STRIG(n) OFF has been
performed inside the trap routine.

Event trapping does not take place
when BASIC is not executing a
program. When an error trap
(resulting from an ON ERROR
statement) takes place this
automatically disables all trapping
(including ERROR, STRIG, STOP,
SPRITE, INTERVAL and KEY).

10 ON STRIG GOSUB 50, 60, 70
20 STRIG(O) ON
STRIG(1) ON STRIG(2) ON
30 FOR T = 1 TO 500 NEXT
40 GOTO 30
50 PRINT ''SPACEBAR"
STRIG(O)OFF RETURN
30
60 PRINT "JOYSTICK I"
STRIG(1)OFF RETURN
30
70 PRINT "JOYSTICK II"
STRIG(2)OFF RETURN
30

221

222

Press spacebar, trigger button on
joystick connected to port 1 and
port 2 one at a time.

Per line 10, the program flow will
be directed to line 50 as the
spacebar is pressed; to line 60 as
the trigger button on joystick
connected to port 1; to line 70 as
the trigger button on joystick
connected to port 1; to line 70 as
the trigger button on joystick
connected to port 2. Once line 50
is executed, depressing the spacebar
will not be detected. Likewise for
lines 60 and 70.

4.2.1.33

Purpose

Yersion

Format

Remarks

OPEN

To allocate a buffer for I/O and set
the mode that will be used with the
buffer.

Cassette, Disk

OPEN " device descriptor
[filename]" [FOR mode]
AS [#] filenumber

This statement opens a device for
further processing.

mode is one of the followings:

OUTPUT : Specifies sequential
output mode

INPUT : Specifies sequential
input mode

APPEND : Specifies sequential
append mode

filename : For cassette version,
a string of 6 characters (maximum) is
allowed. Disk file names can be a
maximum of 6 characters in length
with an optional character extension
that is preceded by a decimal point.

filenumber is an integer
whose value is between one and the
maximum number of files specified in
a MAXFILES statement. It is the
number that is associated with the
file for as long as it is OPEN and is
used by other I/O statements to refer
to the file.

An OPEN must be executed before any
I/0 may be done to the file using any

223

Example

224

of the following statements, or any
statement or function requiring a
filenumber:

PRINT #, PRINT # USING
INPUT #, LINE INPUT #
INPUT$, GET, PUT

Every data file is referenced by a
filename and filenumber. The
filename is the label you use to
refer to the file. The filenumber is
what the computer uses to refer to
the file.

10 OPEN "1 : DATA" FOR OUTPUT AS
#1

20 A$ = "EMPLOYEE"

30 B$ = 'NAME"

40 PRINT # 1, A$, B$

50 CLOSE # 1

60 C$ = "DEPARTMENT"

70 OPEN ''l: DATA'" FOR APPEND AS #
1

80 PRINT # 1, C$

90 CLOSE # 1

100 OPEN "1 : DATA'" FOR INPUT AS #
1

110 LINE INPUT # 1, Di1$

120 LINE INPUT # 1, C1$

130 CLOSE # 1

Line 10 instructs the computer to
open or create a file on drive 1
called "DATA" to which we will output
or write information. "#1'" at the
end of line 10 is the filenumber for
the DATA file #1.

Line 70 - 90 reopen DATA file #1,
then read in D1$ (which consists of
A$ and B$) and Cl1$ (which consists of
Cc$).

4.2.1.34 PAINT

Purpose

Version

Format

Remarks

Example

To £fill in an arbitrary graphics
figure of the specified fill color
starting at coordinate specifier.

Cassette, Disk

PAINT < coordinate specifier
[, € paint color>]

<coordinate specifier> : see the
description at PUT SPRITE statement.
PAINT does not allow < coordinate
specifier> to be out of the screen.

< paint color> may range from O to
15.

PAINT can fill any figure, but
painting jagged edges or very complex
figures may result in an "out of
memory" error. If this happens, you
must use the CLEAR statement to
increase the amount of stack space
available. The paint color should be
same as border of object.

10 SCREEN 1

20 COLOR 15, &

30 LINT (50, 50) - (205, 141), 8
40 LINE (50, 141) - (205, 50), 8
50 CIRCLE (128, 96), 90, 8

60 PAINT (135, 125), 8

70 GOTO 70

Line 60 commands the computer to
start painting at point (135, 125)
using color number 8, which is
magenta, till reaching a border. The
final display is a circle bisected by
2 lines with its lower sector
coloured.

225

4.2.1.35

Purpo:

s

d
o]
(]

Version

?;si
s

Forms:

Remarks

226

.

PLAY

To play music according to music
macro language.

Cassette, Disk

PLAY < string expression for voice 1>
[, < string expression for voice 2 >
[, < string expression for

voice 3> 1]

string expression for voice n
is a string expression consisting of
single character music commands.

PLAY implements a concept similar to
DRAW by embedding a '"music macro
language" into a character string.
When a null string is specified, the
voice channel remains silent. The
single character commands in PLAY
are:

A, B, C, b, B, F, ¢ [#/+
Play the indicated note in the
current octave. A number sign(#) or
plus sign(+) afterwards indicates a
sharp, a minus sign(-) indicates a
flat. The #, + or — is not allowed
unless it corresponds to a black key
on a piano. For example, B# is an
invalid note.

PLAY "CDEFGAB"

0 <n s

Octave. Set the current octave for
the following notes. There are 8
octaves, numbered 1 to 8. Each
octave goes from C to B (CDEFGAB).
Octave 4 is the default octave.

PLAY '"O5GCAFECDGCABOS5CDC"

Play note n. n may range from O to
96. n=0 means rest. This is an
alternative way of selecting notes
instead of specifying the octave

(o n) and the note name (A-G).
The C of octave 4 is 36.

PLAY "O4CNON36"

Lo<n >

Set the length of the following
notes. The actual note length is
1/n. n may range from 1 to 64. The
following table may help explain
this:

LENGTH EQUIVALENT
L1 whole note
L2 half note
L3 one of a triplet of

three half notes (1/3 of
a 4 beat measure)

L4 quarter note

L5 one of a quintuplet (1/5
of a measure)

L6 one of a quarter

note triplet

Lé64 sixty-fourth note

The length may also follow the note
when you want to change the length
only for the note. For example, Al6
is equivalent to L16A. The default
is 4.

PLAY "CDEFGAB L16 CDEFGAB"

227

228

R<n >

Pause(rest). n may range from 1 to
64, and figures of the length of the
pause in the same way as L(length).
The default is 4.

Dot or period after a note causes the
note to be played as a dotted note.
That is, its length is multiplied by
3/2. More than one dot may appear
after the note and the length is
adjusted accordingly. For example,
"A..." will play 27/8 as length etc.
Dots may also appear after the
pause(R) to scale the pause length in
the same way.

PLAY '"CDER2C..D..E.."

T<n >

Tempo. Set the number of quarter
notes in a minute. n may range from
32 to 255. The default is 120.

PLAY "T32 CDEFGAB T255 CDEFGAB"

v <n>
Volume. Set the volume of output.
n may range from O to 15. The

default is 8.
PLAY "VO CDEFGAB V15 CDEFGAB"

M <fn:>

Modulation. Set period of envelope.
n may range from 1 to 65535. The
default is 255.

PLAY "S10 M5 CDEFGAB"

Press CTRL-STOP before typing the
following command:

PLAY "S10 M11115 CDEFGAB"

S<n >

Shape. Set shape of envelope. n
may range from 1 to 15. The default
is 1. The pattern set by this
command are as follows:

0, 1, 2, 3, 9 \
wssns /]
C NN
10

11 \J
12

13 /
VAVAVAVA

PLAY "S1 CDEFGAB"
PLAY '"S15 CDEFGAB"

229

Example

230

¥ < variable > ;
Execute a specified string.

10 A$ = "O4FAAAEGGGDFEDC"
20 PLAY "O4GO5GCO4GECEGCGEOSCCXAS$;"

In all of these commandss the <n >
argument can be a constant like 12

or it can be "= <variable > ;" where
variable is a the name of a variable.
The semicolon(;) is required when you
use a variable in this way, and when
you use the X command. Otherwise, a
semicolon is optional between
commands.

Note that values specified with above
commands will be reset to the system
default when beep sound is generated.

Apart from the above listed
functions, the computer has three
seperate channels of sound that can
be programmed individually to play
together to create chords.

For example:

PLAY "O1GDE'", "O3EFC", "O5GAB"

This command plays three notes in
combination to create a chord. Also
each channel can be programmed to
play something entirely different
from the others to create melody and
harmony part of a piece of music.

Enjoy the piece of music created by
the below program.

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

290

300

310

320

340

ONSTOP GOSUB 410: STOP ON
CLS
COLOR 15, 2, 2

SCREEN 1

LOCATE, 5, 88: PRINT ™ stttk b it deiohoiiohikan kot e
LOCATE 5, 96: PRINT ' %*SPECTRAVIDEO ADSR, 3 CHANNEL MUSIC DEMO*"

LOCATE 5, 104: PRINT ' stiirinknniiidoniiniiiikdinniokinnoot it oo

COLOR 15, 1, 1

PLAY "t60116s0m896305", '"t60116v10m896303", '"t60116v1003m8963"

PLAY "d-4.0b-g-e-8g-B-05d-80b-g-e-8g-b-g-8g-e-'", '"rlr4.b", '"rirb4.g-"
PLAY '"g-8fe-m26890d-1m8963e-8g~8'", "03b-2'", "g-2"

COLOR 15, 10, 10

PLAY "A-4,05d-80b-8g-b-a~805d~80ob-405", "of2g-4f2:, '"d-2e-8d-4.d4"
PLAY '"e-20b-4.b805d-4, ob-g-e-8g-b-"", '"b-2b-4.b8od-2e~4", "e-2"

PLAY '"o05d-8ob-g-e-8g-b-g-8g-e-~'", 'd-4e-4d-803b8", '"o03b-40c4o3b-8a-8"
PLAY "g-8fe~d-1r803", "b-2.b-2", '"g-4od-4d-o3bb-a-g-8fe-d-4d-o02b"
PLAY "b-od-e-8g-a-18bo5d-e-g-4116", '"r8od-2.b-4", "b-a-03b2.0g-4"
PLAY "fe-d-4v5d-sOobb-a-", "b-4", "g-403"

PLAY "g-a-b-fe-g-d-o3bof", 'e-8.fe-8.d-03b8", "b8.od-03b8.b-a-8"
PLAY "e-o3b-a-od-o03c-8.0d-f-a-bo5d-f-a-", '"bb-a-2.", "a-g-f-2"

PLAY '"b8b-a-g-2b-8a-g-e-4.d-ob'", '"o5e-2.0g-403b2", '"oblf2"

PLAY "b-8a-g-e-4.e-c', '"b4b-2", "g-402b-8r8b-4"

COLOR 15, 13, 13

PLAY '"02b-8b-03ce-fgb-oc8e-c'", "oe-203a-4'", '"o3g2f4"

PLAY "e-803b-oce-fgb-o5c8e-c'', '"02b-8.03ce-fgb-oc8e-c', 'g20f4"

PLAY '"e-80b-o5ce-fg-b-obe-4.", 'g8o3b-oce-fg-b-b4.", "o4b-205b4."
PLAY "124d-e-d-o5b-8a-8116v5a-s0Og=-fe-124", "o05a-8g-8b4.o", '"f8e-20"
PLAY '"e-8d-ed-1160b-8a-4g-a-'"", '"b8a-8g-8a-403g-of", ''g-8f8e-8c4b8"
PLAY "18b-.g-16e-g-b-05", '"18e-.d-1603b-od-e~", "1803b-.g-16e-g-b-o"
PLAY 'd-ob-g-e-4g-4b-.", 'g-e-d-o3b-4b4oe-.", 'd-o3b-g-e-4g-4b-."
PLAY "g-16b-05d-e-g~b-g-", "d-16e-g-b-o5d-e-d-'", '"g-16b-od-e-g-b-g-'"
PLAY '"ob-4d-4r206d-4v4d-4,s016", "o3c-4a-4og-1g-'", "o3g-4fboe-1e-"
PLAY "o5b-g-e-8g~b-06d-805b-g-e-8g~b-g-8g~e-"", '"g-g-1", "e-e-1"

PLAY "lg~fe~d-.ol8bb-a-116", 'b-2.d-2.116", '"g-1.11603"

231

350

360

370

380

390

400

410

PLAY "g-a-b-fe-a-g-d-o3bof", "e-8.fe-8.d-03b8", '"b8.0od-03b8.b-a-8"
PLAY "e-o3b-a-~od-e-o03b-bo', 'bb-a-8.b-b'", "a-g-f8.g-a-"

PLAY "d-e-o03b-a-o', "b8b-a-", "a-8g-f-"

PLAY "d-e-o03b-bog-a-bo5d-e-g-a-'", ''a-8oe-8d-e-g-a-bo5d-e-'', '"f8g-a-2"
PLAY '"'112bo6D-E-0'", "L12G-A-BB'", '"A-4A-24"

PLAY '"sOm5378009-1.", "sOobrl6d-1.'", "sOo5r32b-1."

COLOR 15, 4, 5

232

4.2.1.36 PRINT #

Purpose

Yersion

Format

Remarks

Example

PRINT # USING

To write data to the specified
channel.

Cassette, Disk

PRINT # <filenumber> ,

< expression>

PRINT # < filenumber > , USING
<string expression > ;

<list of expression>

See PRINT/PRINT USING statements for
details.

10 OPEN '"'1 : RECORD" FOR OUTPUT AS

#1

20 A$ = "AMT1" : B$ = "AMT 2"
C$ = "AMT3"

30 A = 12.235 : B = 64.2
C = 129.653

40 PRINT # 1, A$, B$, C$

50 PRINT # 1, USING "$$###.##";
A, B, C

60 CLOSE # 1

70 OPEN "1 : RECORD" FOR INPUT AS #
1

80 LINE INPUT # 1, D$

90 CLOSE # 1

Line 20 and 30 define the variables.
Lines 40 and 50 instruct the computer
to write them on the disk. The
command "PRINT # 1, USING" writes
numeric data to disk without explicit
delimiters. The comma at the end of
the format string serves to seperate
the items in the disk file.

233

4.2.1.37

Purpose

Yersion

Format

e

temarks

o

234

PSET
PRESET

To set/reset the specified

coordinate. For the detail of the
coordinate specifier , see the

description at PUT SPRITE statement.

Cassette, Disk

PSET <coordinate specifier >
[, <color>]
PRESET <coordinate specifier
[, <colory]

< coordinate specifier>

coordinates for drawing or setting a
dot; may be either absolute or
relative.

<color> : integer from O to 15
which assigns dot color.

PSET/PRESET draws a dot at the
assigned position on the screen.

PRESET allows the attribute argument
to be left off and it is defaulted
to foreground color.

The only difference between PSET

and PRESET is that if no <color> is
given in PRESET statement, the
background color is selected. When a
<color> argument is given, PRESET
is identical to PSET.

If the < coordinate specifier > is
out of range, no action is taken and
an error is given. If < color> is
larger than 15 then this will result
in an illegal function call.

10 SCREEN 2

20 FOR Y = 60 TO 120

30 PSET (100, Y), 6

40 FOR I = 1 TO 20 : NEXT
50 PRESET (100, Y)

60 NEXT

The appearance and disappearance of
a point creates the impression of
motion from top to bottom of the
screen. Line 40 is merely a time
delay.

235

4.2.1.38

Purpose

Version

Format

Remarks

Example

236

PUT

To write a record from a random
buffer to a random disk file.

Disk

PUT[#] < filenumber> [, < record
number >

< filenumber> is the number under
which the file was OPENed. If

< record number >is omitted, the
record will have the next available
record number after the last PUT.
The largest possible record number
is 32767. The smallest record
number is 1.

PRINT# and PRINT# USING may be used
to put characters in the random
file buffer before a PUT statement.

Any attempt to read or write past
the end of the buffer causes
"Field overflow" error.

10 INPUT '"DATE:"; D$

20 INPUT "DEMO:'; M$

30 OPEN ''1: MEMO" AS #1

40 FIELD #1, 10 AS D$, 20 AS M$
50 LSET A$ = D$

60 LSET B$ = M$

70 PUT #1, 20

80 CLOSE #1

A random file named "MEMO" is
opened to have data written into
it. Line 70 writes the data from
the buffer to the diskette.

4.2.1.39

Purpose

Yersion

Format

Remarks

PUT (graphics)

To output graphic patterns in the
assigned position on the screen.

Cassette, Disk

PUT (x, y), < array name > , [,
< operation>]

(x, y): coordinates of the
upper left-hand corner of the
rectangular region on the screen.

<array name> : name of numerical
array containing graphic pattern
being output on the screen.

< operation > assignment of
operation to be performed with data
already displayed on the screen
when a graphic pattern is output on
the screen. Operations include
PSET, PRESET, XOR, OR and AND.

If omitted, it is interpreted as
XOR.

In contrast to GET, PUT causes the
array data to be output on the
screen. For<operation >, the
following may be selected.

PSET: Output the graphic pattern
contained in the array on the
screen as is (opposite operation
from GET).

PRESET: Reverse the graphic
pattern contained in the array and
output it on the screen (similar to
a photographic negative).

237

Example

238

AND: The result of combining the
graphic pattern contained in the
array and the data already
displayed on the screen on a one to
one basis using AND is output on
the screen.

OR: The graphic pattern in the
array is output on the screen
overlapping the data already
displayed there.

10 SCREEN 1

20 DEFINT C

30 CIRCLE (128, 96), 8

40 LINE (128, 104) - (112, 118)
50 LINE - (144, 118)

60 LINE - (128, 104)

70 DIM C (30, 35)

80 GET (110, 80) - (160, 120), C
9 PUT (20, 16), C, PSET

100 PUT (40, 16), C, PSET

110 PUT (60, 16), C, PSET
120 PUT (80, 16), G, PSET
130 GOTO 130

Lines 30 through 60 represent the
figure drawn. Line 70 creates a
rectangular array large enough to
hold it. After getting the image
on line 80, it is put to different
locations as specified on lines 90
through 120.

4.2.1.40
Purpose
Version

Format

Remarks

PUT SPRITE
To set up sprite attributes.
Cassette, Disk

PUT SPRITE <sprite plane number>
[, < coordinate specifier>]
[, <color>] [, <pattern number>]

<sprite plane number> ranges from O
to 31.

< coordinate specifier>> always can
come in one of two forms:

STEP (x offset, y offset) or
(absolute x, absolute y)

The first form is a point relative
to the most recent point referenced.
The second form is more common and
directly refers to a point without
regard to the last point referenced.
Examples are:

(10, 10) Absolute form

STEP (10,0) Offset 10 in x
and 0 in y

(0, 0) Origin

Note that when BASIC scans coordinate
values it will allow them to be
beyond the edge of the screen,
however values outside the integer
range (-32768 to 32767) will cause an
overflow error. And the values
outside the screen will be
substituted with the nearest possible
value. For example, O for any
negative coordinate specification.

239

240

Note that (0,0) is always the upper
left hand corner. It may seem
strange to start numbering y at the
top so the bottom left corner is
(0,191) in high-resolution, but this
is the standard.

Above description can be applied
wherever graphic coordinate is used.

x coordinate: x may range from -32
to 255. y coordinate: y may range
from -32 to 191. 1If 208 (&HDO) is
given to y, all sprite planes behind
disappear until a value other than
208 is given to that plane. If 209
(&HD1) is specified to y, then that
sprite disappears from the screen.
Refer to VDP (Video Display
Processor) manual for further
details. Thus to erase a sprite, set
y to 209. To erase all the sprites
following a specific

< sprite-plane > , set the y value
to 208.

When a field is omitted, the current
value is used. At start up, color
defaults to the currert foreground
color.

< pattern number> specifies the
pattern of the sprite, and must be
less than 256 when size of sprites is
O or 1, and must be less than 6 when
size of sprites is 2 or 3. < pattern
number> defaults to the < sprite
plane number > . See also SCREEN
statement and SPRITE$ variable.

Example

10 FOR I =1 TO 8
20 READ A$
30 B$ =B$ + CHR$ (VAL
(n&Bn + A$))
40 NEXT
50 SCREEN 1, 1
60 SPRITE$ (0O) = B$
70 PUT SPRITE 0, (128, 96),

15, 0
80 GOTO 80
90 DATA 0

100 DATA 00111100
110 DATA 00100000
120 DATA 00111100
130 DATA 00000100
140 DATA 00000100
150 DATA 00111100
160 DATA O

What you see on the screen is the
character "S" in white.

Lines 90 to 160 specify the sprite's
shape. There are 8 characters on
each data statement.

The zeros make the display
transparent at that point of the
shape while the ones are the

points lit up.

Lines 10 to 40 set up a loop to

read data.

Line 30 converts data into binary
strings, appending each one to the
previous string and store this shape
unit in B$.

Line 60 picks sprite numbered 0. It
carries the shape contained in B$.

Line 70 puts the sprite#0 that is

specified in line 60 on plane O at
position (128, 96) using color #15.

241

242

Sprites are not limited to

8 by 8

pixels. They can be placed within

a 16 by 16 box.

When SCREEN size O or 1 is
the sprite size is limited
If size 2 is selected, the
by 16 box is allowed. The

selected,
to 8 by 8.
use of 16
following

example illustrates how the 16 by 16

box is filled:

10 SCREEN 1, 3

20 FOR X = 1 TO 32

30 READ A$

40 RESTORE

50 S$ = S$ + CHR$ (VAL
A$))

60 SPRITE $(0) = S$

70 PUT SPRITE O, (128,

15, 0
80 NEXT
90 GOTO 90

100 DATA 11110001

(u&Bn +

96),

Notice that the computer first fills
an 8 x 16 box and then fills the
adjacent 8 x 16 box to make a 16 x 16

box.

4.2.1.41

Purpose

Version

Format

Bemarks

..

SAVE

To save a BASIC program file to the
specified device.

Cassetee, Disk

SAVE " [<device descriptor>]
< filename > " [,A,]

<device descriptor> : For cassette,
this can either be "CAS:" or simply
omit this part. For disk drive, it
should be "1:" or "2:" depending on
which disk drive is in use.

< filename>» : TFor cassette version,
a string of 6 characters (maximum) 1is
allowed. Disk filenames can be a
maximum of 6 characters in length
with an optional character extension
that is preceded by a decimal point.
The maximum number of characters in
an extension is 3. If the file name
is more than 6 characters, BASIC
inserts a decimal point after the
sixth character and uses the next
three characters as an extension.

Any additional points are ignored.

When saving to cassette, its motor
is turned on and the file is written
to the tape.

If a file with the same filename
alread exists on the diskette, it
will be written over.

The "A" option saves the program

in ASCII format. Otherwise, BASIC
saves the file in a compressed binary
(tokenized) format. ASCII files take
more space. Some types of access
require that files be in ASCII

243

format. For example, a file intended
to be merged must be saved in ASCII
format.

Example SAVE "CARACE"
Save the program in memory on tape
under the filename ''CARACE'.

SAVE "1 : SYSGEN.BAS"

The program SYSGEN.BAS is saved on
the diskette in drive 1.

244

4.2.1.42 SGREEN

Purpose

Version
Format

Remarks

Ewanmple

To assign the screen mode and sprite
size.

Cassette, Disk

SCREEN [< mode>] [,<sprite size>]

<mode >

0: 40 x 24 text mode

1: 256 x 192 high resolution mode
2: 64 x 48 low resolution mode

<sprite size> determines the
size of sprite.

0: 8 x 8 unmagnified

1: 8 x 8 magnified

2: 16 x 16 unmagnified

3: 16 x 16 magnified

10 SCREEN 0, 1
20 LOCATE 10, 10 : PRINT

"BEETHOVEN"'
30 FOR I = 1 TO 500
40 NEXT

50 SCREEN 1.1
60 LOCATE 80, 80 : PRINT

"BEETHOVEN"
70 FOR I = 1 TO 500
80 NEXT

90 SCREEN 2, 1

100 LOCATE 20, 60 : PRINT
"BEETHOVEN"

110 GOTO 110

This example demonstrates the
different printout effect of three
modes. Although the characters
printed on screen by lines 20 and 60
are very similar, notice the
different locations of cursor
position.

245

As the screen mode is changed to 2
in line 90. The printout characters
are much larger.

246

4.2.1.43 SOUND

Purpose : To write value directly to the
register of PSG

Version : Cassette, Disk

Format : SOUND <register of PSG> ,
< value to be written >

Remazrhs

&
k)
4]

< register of PSG> : PSG
(Programmable Sound Generator) has 13
available registers (1 to 13).

< value to be written> ranges from

1 to 255.

Basically, the following blocks in
the PSG produce some programmed
sounds:

Tone Generators
Produce the basic square wave tone
frequencies for channel A, B, C.

Noise Generator

Produce a frequency modulated pseudo
random pulse width square wave
output.

Mixers

Combine the outputs of the Tone
Generators and the Noise Generator.
One for each channel (A, B, C).

Amplitude control

Provide the D/A Converters with a
fixed or variable amplitude pattern.
The fixed amplitude is under direct
CPU control; the variable amplitude
is accomplished by using the output
of the Envelope Generator.

247

1 as determined by the

Produce an envelope pattern which can
51gna

be used to amplitude modulate the

output of each Mixer.
Each of the three D/A Converters

produces up to a 16 level output

Envelope Generator
D/A Converters
Amplitude Control.

0l 14 zd €d 2704p/adeyg edofenug €Ty
4 Qun] asieonH 21g-@ 1013uU0) FAx:
§ °@un] autg 31g-8 103e19uU9n odoiaauy 114
01 11 71 €1 R epn3tTduy o [ouUuUBRYD o1y
01 11 71 €1 R epnitduy g [ouueyp 64
01 17 71 €1 I epnit1duy vy [euueyp EE

v g 0 v g 0 V0o/1I €0/1 a1qeUl
@1qeuy 8uoj @1qeuy °STION a1qeuy jnduj 0/1I — 1013U0) IBXIR 14
T013u0) POTIag 3ITE~G PoTIaq °SION 94
auny, 9sieo) 3II1g % ¢
O suny surgd 31g-8 potisg auoy O [ouUuUERYD PE
g aunj, @sieo) 3IIg ¥ [
g sun] °utd 31d-8 potasg suol g [duueyy 28
y 8un] 8sieo) 3IIg % 79
V suny eurg 31g-8 poTa®q Puo0l V [ouueyp 0y
JIISIOH

og 14 zg €d Lo cd 9g Lg
119

(S¥ALSIOTA TOJYINOD ALIIM/AVIE #T)

@
AVEIV IYILSIOITY JOLVIINID ANOOS dTIVARVIOOAd 3

Tone The PSG has 3 tone channels A, B and

gﬁﬂérggﬁf C. The frequency for each channel is
ontrol obtained by counting down the input

clock by 16 times the programmed 12-
bit Tone Period value. Each 12-bit
value is obtained by combining the
contents of the relative Coarse and
Fine Tune registers, as illustrated
in the following:

COARSE TUNE REGISTER FINE TUNE REGISTER

[B7 [B6 [B5 [B4 [B3 [B2 [BL [BO B7 [B6 | B> | B4 | B3 | B2 [Bl | BO

NOT USED

{rpii [TPi0 | TPO | TP8 | TP/ | TP6]| TP5 | TP4 | TP3 | TP2 | TP1 | TPO |
12-BIT TONE PERIOD TO TONE GENERATOR

The following equations describe the
relationship between the desired
output tone frequency and the input
clock frequency and Tone Period:

ired tone frequency> =<input clock frequency >
{desire q 16*% < tone period>

<tone periodd = 256% < coarse tune value>
+ < fine tune value>

The above values should be calculated
on decimal basis.

CHANNEL COARSE TUNE FINE TUNE

REGISTER REGISTER
A R1 RO
B R3 R2
C R5 R4

249

For example

10 INPUT "ENTER FREQUENCY'"; A

20 F 3579545 / (16%* A)

30 H=F / 256

40 L = F AND 255

50 SOUND O, L

60 SOUND 1, H

70 SOUND 8, 15 : PRINT "VOLUME
CONTROL OF CHANNEL A"

80 SOUND 7 , 254 : PRINT "&B 11111110
TO ENABLE CHANNEL A"

Hoise The frequency of the noise source is
Cenerator obtained by counting down the input
Control clock by 16 times the result by the

programmed 5-bit Noise Period value.

R6 [B7 B6 B5 B4 B3 B2 Bl BO |
S ———
NOT USED 5-BIT NOISE PERIOD
TO NOISE GENERATOR

The noise frequency equation is
< input clock frequency >
<desired noise frequency> = 16* < noise period>

Amplitude The amplitudes of the signals

Control generated by each of the three D/A
Coverters (one each of channels A, B
and C) is determined by the contents
of the lower 5 bits (B4 to BO) of
registers R8, RY and R10.

The amplitude "mode" (bit M) selects
either fixed level amplitude (M=0) or
variable level ampltiude (M=1). Bits
L3 to LO, defining the value of a
fixed level ampltiude are only active
when M=0. Value for volume ranges
from O to 15 with 15 being the

250

loudest. When M=1, the amplitude of
each channel is determined by the
envelope pattern as defined by the
Envelope Generator's 4 bit output E3
to EO.

The amplitude mode (bit M) can be
regarded as an '"envelope enable"
bit. When M=0 the envelope is not
used and when M=1 the envelope is
enabled.

Value for volume ranges from O to 15
with 15 being the loudest.

For example

10 SOUND 0, 100

20 SOUND 1, O

30 SOUND 7, 254 : REM TURN ON
CHANNEL A (MIXER)

40 FOR I = 15 TO O STEP -1

50 SOUND 8, I

60 FOR J = 1 TO 200 : NEXT J : REM
DELAY

70 NEXT I

This program renders a high pitched
sound fading away because of the
decrement of volume from 15 to O.

The amplitude control register can
also be used to direct the envelope
period of each channel, by setting
the amplitude channel to a value of
16 (&B 10000), the amplitude of the
corresponding channel will be
controlled by register 11, 12 and 13.
See the Envelope Period Control for
details.

251

Mixer Register 7 is a multi-function Enable

Control register which controls the three
Noise/Tone Mixers and the two general
purpose I/0 Ports.

The Mixer combines the noise and tone
frequencies for each of the three
channels. The determination of
combining neither, either or both
noise and tone frequencies on each
channel is made by the state of bit O
to bit 5 of register 7. The
direction (input or output) of the
two general purpose I/0 Ports (I/OA
and I/0B) is determined by the state
of bits B7 and B6 of R7, which are
ignored by BASIC. For the bit
logical value : 1 disables the
channel while O enables it.

Disabling noise and tone does not
turn off a channel. Turning a
channel off can only be accomplished
by writing all zeros into the
corresponding Amplitude Control
register R8, R9 or R10.

For example

SOUND 7, &B 11111110
Turn on tone channel A.
SOUND 7, &B 11110110
Enable both noise and tone channel A.

Envelope To accomplish the generation of
Generator fairly complex envelope patterns,
Control two independent methods of control

are provided in the PSG: first,

it is possible to vary the frequency
of the envelope using registers R11
and R12; and second, the relative
shape and cycle pattern of the
envelope can be varied using register
R13.

252

Envelope The frequency of the envelope is

Generator obtained by first counting down the

Control input clock by 256, then by further
counting down the result by the
programmed 16-bit Envelope Period
value, which is obtained by
combining the contents of the
Envelope Coarse and Fine Tune
registers.

R12 ENVELOPE COARSE TUNE R11 ENVELOPE FINE TUNE

|B7 | B6 | B5| B4| B3] B2 [B1] BO| [B7]B6 [B5 B4 [B3[B2[B1[BO

[EP1|EP14|EP13[EP12[EP11[EP10|EP9|EP8| EP7[EP6 [EP5[EP4 [EP3[EP2|EP1|EPO

16-BIT ENVELOPE PERIOD TO ENVELOPE GENERATOR

The 16-bit value programmed in the
combined Coarse and Fine Tune
registers is a period value - the
higher the value in the registers,
the lower the resultant envelope
frequency.

The envelope frequency equations are:

<input clock frequency >

<desired envelope frequency> = 256*% < envelope period)

envelope period = 256*% <coarse tune register value>
+ <fine tune register value>

Envelope The Envelope Generator further counts
Shape/Cycle down the envelope frequency by 16,
Control producing a l6-state per cycle

{r13) envelope pattern as defined by its

4-bit counter output E3 E2 E1 EO.

The shape and cycle pattern of any
desired envelope is accomplished by
controlling the count pattern (count
up/count down) of the 4-bit counter
and by defining a single-cycle or
repeat-cycle pattern.

253

This envelope shape/cycle control is
contained in the lower 4-bits
(B3 - BO) of register R13.

R13 ENVELOPE SHAPE/CYCLE CONTROL REGISTER

| E7| E6 | E5 | E4| E3] E2 | E1] EO | FUNCTION:
— 4 L— 5 HOLD
NOT USED ~» ALTERNATE
> ATTACK
» CONTINUE

(TO ENVELOPE
GENERATOR)

The definition of each function is
as follows:

Hold When set to logic "1'", limits the
envelope to one cycle, holding the
last count of the envelope counter
(E3 - EO).

Alternate When set to logic '"1'", the envelope
counter reverses count direction
(up-down) after each cycle. When
both the Hold bit and the Alternate
bit are ones, the envelope counter
is reset to its initial count
before holding.

Attack When set to logic '"1'", the envelope
counter will count up (attack) from
E3 E2 E1 EO = 0000 to E3 E2 El1 EO =
1111; when set to logic '"O0", the
envelope counter will count down
(decay) from 1111 to 0000.

Continue When set to logic '"1'", the cycle
pattern will be as defined by the
Hold bit; when set to logic "0O",
the envelope generator will reset
to 0000 after one cycle and hold at
that count.

254

Given below is a chart of the binary
count sequence of E3 E2 E1 EO for
each combination of Hold, Alternate,
Attack and Continue. When selected
by the Amplitude Control registers,
these outputs are used to amplitude
modulate the output of the Mixers.

ENVELOPE SHAPE/CYCLE GONTROL

R13 BITS
B3 B2 Bl BO GRAPHIC REPRESENTATION OF
C A ENVELOPE GENERATOR
0 L OUTPUT E3 E2 El EO SELECTED
N A T VALUE
T T E
I T R H
N A N O
U ¢ A L
E K T D

E

o o0 X x \\\\ 0,1, 2, 3
0 1 X X /‘ 4, 5, 6, 7
t o o 1 \\\\ 9
1 o 1 o \\\\////\\\\///‘\\\///\\\V//*\\\\ 10
1 o0 1 1 \\J 11
oo NNV |
1 1 0 1 / 13
11 1 o ////\\\\///A\\\////\\\\///A\\\/// 14
R T T | //1 15

ENVELOPE PERIOD
(DURATION OF ONE CYCLE)

255

256

Now try the following example:

10
20
30
40
50
60
70
80
90
100
110
120

SOUND 0, 100

SOUND 1, O : REM TONE GHANNEL A
SOUND 7, &B 11111110: REM ENABLE A
SOUND 8, 16 : REM ENABLE REG 11, 12
SOUND 13, 14 : REM SHAPE SELECT

S =.5 : REM FREQ = .5HZ

CLOK = 3579545

L = CLOK / (256% S) AND 255

H = CLOK / (256% S) /256

SOUND 11, L
SOUND 12, H
END

4.2.1.44

Purpose

Version
Format

Remarks

SPRITE ON/OFF/STOP

To activate/deactivate trapping
of sprite in a BASIC program.

Cassette, Disk
SPRITE ON/OFF/STOP

A SPRITE ON statement must be
executed to activate trapping of
sprite. After SPRITE ON statement,
if a line number is specified in the
ON SPRITE GOSUB statement then every
time BASIC starts a new statement it
will check to see if the sprites
coincide. 1If so it will perform a
GOSUB to the line number specified in
the ON SPRITE GOSUB statement.

If a SPRITE OFF statement has been
executed, no trapping take place

and the event is not remembered even
if it does take place.

If a SPRITE STOP statement has been
executed, no trapping will take
place, but if the sprites coincide
this is remembered so an immediate
trap will take place when SPRITE ON
is executed.

Refer to ON SPRITE GOSUB.

257

4.2.1.45

Purpose

Version
Format

Remarks

Example

258

STOP ON/OFF/STOP

To activate/deactivate trapping of a
CTRL-STOP.

Cassette, Disk
STOP ON/OFF/STOP

A STOP ON statement must be executed
to activate trapping of a CTRL-STOP
After STOP ON statement, if a line
number is specified in the ON STOP
GOSUB statement then every time BASIC
starts a new statement it will check
to see if a CTRL-STOP was pressed.

If so, it will perform a GOSUB to the
line number specified in the ON STOP
GOSUB statement.

If a STOP OFF statement has been
executed, no trapping takes place
and the event is not remembered even
if it does take place.

If a STOP STOP statement has been
executed, no trapping will take
place, but if a CTRL-STOP is presed
this is remembered so an immediate
trap will take place when STOP ON is
executed.

Refer to ON STOP GOSUB.

4.2.1.46

Purpose

Version

Format

Remarks

Example

STRIG ON/OFF/STOP

To activate/deactivate trapping of
trigger buttons of joysticks in a
BASIC program.

Cassette, Disk
STRIG (< n >) ON/OFF/STOP

n can be in the range of O to 2.
If n =0, the space bar is used for
a trigger button. If n is 1, the
trigger of joystick 1 is used. When

n is 2, joystick 2 is referenced.

A STRIG(n)ON statement must be
executed to activate trapping takes
place and the event is not remembered
even if it does take place.

If a STRIG(n)OFF statement is
executed, trapping will be disabled
and the check on the trigger status
will be suspended. Also it will not
be maintained even if it is
depressed.

If a STRIG(n)STOP statement is
executed, no trapping will take
place, but if the trigger button is
pressed this is remembered so an
immediate trap will take place when
STRIG(n)ON is executed.

Refer to ON STRIG GOSUB.

259

4.2.1.47 VPOKE

Purpose : To poke a value to a specified
location of VRAM.

Version ¢ Cassette, Disk

Format : VPOKE < address of VRAM > ,
< value to be written >

Remarks : < address of VRAM > can be in the
range of O to 16383.

Example : 10 VPCKE &H3000, &H10
20 B = VPEEK (&H3000)
30 PRINT B

RUN

16

Ok

Line 10 writes the value &H10 into
VRAM at the location &H3000. Line 20
reads this value back. It is printed
in decimal figure by line 30.

260

4.2.1.48

Purpose

Version

Format :

Remarks

Example

WIDTH

Set the width of display during text
mode.

Cassette, Disk

WIDTH < width of screen in text mode >

£ width of screen in text mode>is a
valid numeric expression returning
an integer either 39 or 40. The
default is 39. 1If the 80 - column
interface cartridge and monitor are
installed, then width 80 is also
valid as disk BASIC is run.

To set the printed width in the
number of characters for the screen.
Changing the screen width causes the
screen to be cleared.

10 FOR T = 1 TO 50
20 PRINT I;
30 NEXT

Try the above example by typing:

RUN
Then enter

WIDTH 40
and notice the screen is cleared and
Ok prompt appears on the top left
hand screen. Type RUN to execute the
program. Notice one more character
is printed per row for the second
program.

Try the following if 80 - column
interface card is installed and
the monitor is turned on:

WIDTH 80
Enter and run the above program
again.

261

4.2.2

4.2.2.1

Purpose

Version

Format

Remarks

Example

262

Functions

CVI, CVS, CVD

Convert string values to numeric
values.

Disk

CVI (< 2-byte string >)
CVS (< 4-byte string >)
CVD (< 8-byte string >)

Numeric values that are read in
from a random disk file must be
converted from strings back into
numbers. CVI converts a 2-byte
string to an integer. CVS converts
a 4-byte string to a single
precision number. CVD converts an
8-byte string to a double precision
number.

70 FIELD #1,4 AS N$, 12 AS B$,...
80 GET #1, 20
90 Y = CVS (N$)

The CVS command converts the string
variable N$ into a single precision
value which is stored in container
llYll .

4.2.2.2
Purpose
Vexrsion
Format

Remarks

Example

EOF

Indicate an end of file condition.

Cassette, Disk

EOF (< filenumber >)

< filenumber > is the number
specified on the OPEN statement.

Return -1 (true) if the end of a
sequential file has been reached.
Otherwise, returns 0. Use EOF to
test for end-of-file while inputing
to avoid "Input past end" error.

10

20
30
40
50
60

70
80
90

100 GCLOSE # 1
110 END

OPEN "1 : DEMO" FOR OUTPUT AS
#1

FORA =0T
PRINT # 1,
NEXT A
CLOSE # 1
OPEN "1 : DEMO" FOR INPUT AS #
2

IF EOF(1) THEN GOTO 110

INPUT # 1, A

GOTO 70

0 50
A

This program writes the number O to
50 into a file and then reads them

back.

On line 70, the EOF function tests to
see whether or not the end of a file
is reached. 1If the end of a file is
reached, then EOF returns to the
program is 1. A O will be returned
if the end of the file has not been
reached.

263

4.2.2.3

Purpose

Version
Format

Remarks

Example

264

LOC

Return the record number under
which information is stored.

Disk
LOC (< filenumber >)

With random disk files, LOC returns
the record number just read or
written from a GET or PUT. If the
file was opened but no disk I/O has
been performed yet, LOC returns a
O. With sequential files, LOC
returns the number of sectors (128
byte blocks) read from or written
to the file since it was OPENed.

200 IF LOGC (1) > 50 THEN STOP

This checks whether the last record
number just read from a GET command
or written to by a PUT command
exceeds 50. If this is true then
the program execution halts.

4.2.2.4 MKI$, MKS$, MKD$

Purpose : Convert numeric values to string
values.

Version : Cassette, Disk

Format : MKI$ (< integer expression >)

MKS$ (< single precision
expression >)
MKD$ (< double precision
expression >)

Remarks : Any numeric value that is placed in
a random file buffer with a LSET or
RSET statement must be converted to
a string. MKI$ converts an integer
to a 2-byte string. MKS$ converts
a single precision number to a 4-
byte string. MKD$ converts a
double precision number to an 8
-byte string.

Ewanmple : 90 AMT = K + T

100 FIELD #1,8 AS D$,20 AS N$
110 LSET D$ = MKS$(AMT)

120 LSET N$ = A$

130 PUT #1, 10

Line 110 uses the MKS$ command to
convert the numeric data stored in

"AMT" into a string variable
called D$.

265

4.2.2.5
Purpose
Version
Format

Remarks

Example

266

PAD

Return various status of touch pad.
Cassette, Disk

PAD (< n >)

<n> ranges from O to 3.

For <n > = 0, the status of touch
pad is returned; -1 when touched, O

when released.

For < n > = 1, the x-coordinate is
returned, ranging from O to 255.

For <n > = 2, the y-coordinate is
returned, ranging from O to 255.

For < n > = 3, the status of switch
on the pad is returned; -1 when
pressed, O otherwise.

10 SCREEN 2

20 COLOR 15, 5, 5

30 CLS

40 IF PAD (0) THEN 60

50 GOTO 40

60 X = PAD(1) : Y = PAD(2)
70 PSET (X, Y)

80 IF PAD(O) THEN 100

90 GOTO 80

100 X = PAD(1) : Y = PAD(2)
110 LINE - (X, Y)

120 GOTO 80

Geometrical diagram drawn on the
tablet will be displayed on the
screen.

Lines 40 and 80 check the status
of tablet.

Line 60 and 100 get the points
specified by the user.

267

4.2.2.6

Purpose

Version
Format

Remarks

Example

268

POINT

Return the color of the specified
point on the screen.

Cassette, Disk

POINT (X, Y)

X, y are the coordinates of the point
to be used. The coordinates must be
in absolute form.

Return the color of a specified

pixel. TIf the point is out of range
the value -1 is returned.

10 SCREEN 1

20 COLOR 15, 4, 5

30 PSET (200, 100), 8
40 A = POINT (200, 100)
50 B = POINT (100, 100)
60 C = POINT (200, 200)
70 SCREEN O

80 PRINT A; B; C;

Line 40 sets A to be the color of
point (200, 100). Likewise for lines
50 and 60. As the program is
executed, the values for A, B, C are
found to be 8, 5 and -1 respectively.

The color number (8) for point
(200, 100) is specified on line 30.

The color number (5) for point
(100, 100) is determined on line 20.

If the point given is out of range,
eg. (200, 200), the value -1 is
returned.

4.2.2.7 STICK

Purpose ¢ Return the directions of a joystick.
Version : Cassette, Disk
Format :+ STICK (< n >)
Remarks : <n > can be in the range of 0 to 2.

If <n> =0, the cursor key is used
as a joystick. If < n > is either 1
or 2, the joystick connected to
proper port is used. When neutral, O
is returned. Otherwise, value
corresponding to direction is

returned.
1
8\ /2
7 O \\\\\\\\ |
6/ 4
5
Example : 10 SCREEN O:

200 X% =20 : Y% = 12

30 LOCATE X%, Y% : PRINT "%

40 S = STICK (0)

50 IFS=0ORS=1O0RS=>5
THEN 40

60 LOCATE X%, Y% : PRINT " "

70 ON (S + 1)/4 GOTO 80, 100

80 X% =X% + 1 : IF XL = 39 THEN
X%t =0

90 GOTO 30

100 X% = X4 -1 : IF X%t = -1 THEN
X7, = 38

110 GOTO 30

269

This program demonstrates the
movement of a character across the
screen.

On line 40, movement of cursor key
is recorded per container S.

Line 50 restricts its movement to
be left/right only.

270

4.2.2.8

Purpose

Version
Format

Remarks

Example

STRIG

Return the status of a trigger button
of a joystick.

Cassette, Disk
STRIG (< n >)

<n > can be in the range of 0O to 2.
If<n> = 0, the space bar is used as
a trigger button. If <n > is 1, the
trigger of a joystick 1 is used; when
<n > is 2 joystick 2. O is returned
if the trigger is not being pressed.
Otherwise, -1 is returned.

10 CLS

20 GOLOR 15

30 IF STRIG(O) THEN GOSUB 60
40 PRINT ''*"

50 GOTO 30

60 PRINT "#"

70 RETURN 30

A pattern of "*" and "#" is printed
on the screen as this program is
executed.

Per line 30, on pressing space bar
"#" will be printed instead of "*'",

271

4.2.2.9 VPEEK

Purpose : Return a value of VRAM.

Version ¢+ Cassette, Disk

Format : VPEEK (< address of VRAM >)
Remarks : < address of VRAM > can be in the

range of O to 16383.

The returned value lies within the
range O to 255.

Refer to VPOKE which is the
complementary function.

Example : 10 VPOKE &H3000, &H22
20 B = VPEEK (&H3000)
30 PRINT B
RUN
34
Ok

Line 20 reads the value of the
byte stored in user-assigned hex
offset memory location 3000

(12288 bytes), which is 22 in hex
number (or 34 in decimal integer).

272

4.2.3 Special variables

The followings are special variables.
When assigned, the content is
changed, when evaluated, the current
value is returned.

273

4.2.3.1

Purpose
Version
Format

Remarks

Example

274

SPRITE$

The pattern of sprite.
Cassette, Disk
SPRITE$ (< pattern number >)

{ pattern number > must be less than
256 when size of sprites is O or 1,
less than 64 when size of sprites is
2 or 3.

The length of this string variable is
fixed to 32 bytes. So, if assign the
string that is shorter than 32
characters, the chr$(0)s are added.

10 SCREEN 1

20 FOR I =1 TO 8

30 READ B $

40 A$ = A$ + CHR$
(vaL ("&B" + B$))

50 NEXT I

60 SPRITE $ (1)

70 SPRITE $ (2) A$ + A$

80 SPRITE $ (3) A$ + A$ + AS$

90 SPRITE $ (4) = A$ + A$ + A$
+A$

100 PUT SPRITE 1, (40, 60), 15, 1

110 PUT SPRITE 2, (80, 70), 8, 2

120 PUT SPRITE 3, (120, 80), 10, 3

130 PUT SPRITE 4, (160, 90), 1, &

140 GOTO 140

150 DATA 00111100

160 DATA 01000010

170 DATA 01000010

180 DATA 00111100

190 DATA 01000010

200 DATA 10000001

210 DATA 10000001

220 DATA 01111110

A$

Il

Four geometrical figures, each built
up by the numeral "8", appear on the
screen.

Line 30 reads information from the
data lines.

Line 40 assigns it to the container
A$.

The eight lines of data (150 to 220)
provide the shape you wish to put on
the screen. Line 40 converts the
data code into binary strings which
consist of ones and zeros. Then each
piece of the shape are fitted
together. The whole outfit is stored
in container A$.

Line 60 creates a sprite which is
numbered as 1. Three other sprites
are generated on lines 70, 80 and 90.

Let's have a closer look at line 100.
It reads as: put the sprite which is
specified at the end of the line
(i.e. 1) and place it on surface
numbered 1 at position (40, 60) in
color number 15.

There is a more elegant way of
creating the same effect. Instead of
reading and writing data in a FOR
NEXT loop and data lines, all data
are written in on a line. Also hex
figures can be used instead of binary
numbers. Try the following program:

275

276

10
20

30
40
50
60

70
80
90
100
110

SCREEN 1
A$ = CHR$(&H3C) + CHR$(&H42)
+ CHR$(&H42) + CHR$(&H3C)

+ CHR$(&H42) + CHR$(&H81)
+ CHR$(&H81) + CHR$(&H7E)
SPRITE $ (1) = A$

SPRITE $ (2) = A$ + A$

SPRITE $ (3) = A$ + A$ + A$
SPRITE $ (4) = A$ + A$ + A$

+ A$

PUT SPRITE 1, (40, 60), 15, 1
PUT SPRITE 2, (80, 70), 8, 2
PUT SPRITE 3, (120, 80), 10, 3
PUT SPRITE &4 , (160, 90), 1, &4
GOTO 110

4.2.3.2
Purpose
Version
Format

Remarks

o]

e

wamp |

,

<

TIME

System intend timer.
Cassette, Disk
TIME

An unsigned integer. TIME is
automatically incremented by 1 every
time VDP generates interrupt (60
times per second), thus when an
interrupt is disabled (for example,
when manipulating cassette), it
retains the old value.

10 DEFINT H-S

20 TIME = O

30 T TIME/60

40 H T/3600

50 M = (T - 3600%M)/60
60 S =T - 60*M - 3600*H
70 SCREEN 2

80 PRINT H":" M":" S

90 PRINT TIME

100 GOTO 30

1

This program serves as a clock.
Notice that the value of TIME

increments by 60 then S will
increment by 1.

2717

4.2.4 Machine dependent statements
and functions

4.2.4.1 INP

Purpose : Return the byte read from the port.
Version : Cassette, Disk

Format : INP (£ port number >)

Remarks : < port number» lies in the range O

to 255. INP is the complementary
function to the OUT statement.

Example : X = INP (250)
This instruction reads a byte from
port 250 and assigns it to the
variable X.

278

4.2.4.2

Purpose

Version

Format

Bemarks

Example

ouT

To send a byte to a machine output
port.

Cassette, Disk

OUT < port number > ,
{ integer expression

< port number > lies in the range O
to 255.

{ integer expressiond 1is the data to
be transmitted within the range O

to 255.

OUT is the complementary statement to
the INP function.

OUT 32, 100

This sends the value 100 to output
port 32.

279

4.2.4.3

Purpose

Yersion
Format

Remarks

Example

280

s

WAIT

To suspend program execution while
monitoring the status of a machine
input port.

Cassette, Disk
WAIT port number , I(, J]

port number is the port number,
in the range O to 65535. I, J are
integer expressions in the range O to
255.

The WAIT statement causes execution
to be suspended until a specified
machine input port develops a
specified bit pattern. The data read
at the port is XOR'ed with the
integer expression J, and then AND'ed
with integer expression I. If the
result is zero, BASIC loops back and
reads the data at the port again. If
the result is non-zero, execution
continues with the next statement.

If J is omitted, it is assumed to be
zero.

Caution: It is possible to enter an
infinite loop with the WAIT
statement. If so, the machine needs
to be restarted manually.

WAIT 32, 2

To suspend program execution until
port 32 receives a 1 bit in the
second bit position.

APPE!

e

ERROR MESSAGE

Whenever BASIC detects an error, execution in direct
or indirect mode will be suspended. An error
message is displayed. It is possible to trap and
test errors in a BASIC program using the ON ERROR
GOTO statement and the ERL and ERR variables.

Apart from those listed in the below table, BASIC
allows users to specify an error by use of the ERROR
statement. Such error should be encoded a value of
O through 255, preferrably 61 through 255.

All the BASIC messages with their associated code
and number are listed below:

CODE NUMBER MESSAGE

NF 1 NEXT without FOR
A variable in a NEXT statement does
not correspond to any previously
executed unmatched FOR statement
variable.

SN 2 Syntax error
A line is encountered contains some
incorrect sequence of characters
(such as unmatched parentheses,
misspelled command or statement,
incorrect punctuation, etc.).
Microsoft BASIC automatically enters
edit mode at the line that carried
the error.

RG 3 RETURN without GOSUB
A RETURN statement is encountered for
which there is no previous unmatched
GOSUB statement.

281

0D

FC

ov

OM

UL

282

Out of DATA

A READ statement is executed when
there are no DATA statement with
unread data remaining in the program.

Illegal function call

A parameter that is out of the range
is passed to a math or string
function. An FC error may also occur
as the result of:

1. A negative or unreasonably large
subscript.

2. A negative or zero argument with
LOG.

3. A negative argument to SQR.

4. A negative mantissa with a
noninteger exponent.

5. A call to an USR function for
which the starting address has
not yet been given.

6. OUT, WAIT, PEEK, POKE, TAB, SPC,
STRING$, SPACE$, INSTR or
ON...GOTO.

Overf low

The result of a calculation is too
large to be represented in BASIC's
numberr format. If underflow occurs,
the result is zero and execution
continues without an error.

Out of memory

A program is too large, has too many
files, has too many FOR loops or
GOSUBs, too many variables, or
expressions that are too complicated.

Undefined line number

A nonexistent line is referenced in a
GOTO, GOSUB, IF...THEN...ELSE, or
DELETE statement.

BS

DD

/0

ID

0S

10

11

12

13

14

Subscript out of range

An array element is referenced either
with a subscript that is outside the
dimensions of the array, or with the
wrong number of subscripts.

Redimensioned array

Two DIM statements are given for the
same array, or DIM statement is given
for an array after the default
dimension of 10 has been established
for that array.

Division by zero

A division by zero is encountered in
an expression, or the operation of
involution results in zero being
raised to a negative power. It is
not necessary to fix this condition,
because the program continues
running. Machine infinity with the
sign of the number being divided is
the result of the division; or
positive machine infinity is the
result of the exponentiation.

Illegal direct

A statement that is illegal in direct
mode is entered as a direct mode
command.

Type mismatch

A string variable name is assigned a
numeric value or vice versa; a
function that excepts a numeric
argument is given a string

argument or vice versa.

Out of string space

String variables have caused BASIC to
exceed the amount of free memory
remaining. BASIC will allocate
string space dynamically, until it
runs out of memory.

283

LS

ST

CN

UF

284

15

16

17

18

19

20

21

22

23

String too long
An attempt is made to create a string
more than 255 characters long.

String formula too complex

A string expression is too long or
too complex. The expression should
be broken into smaller expressions.

Can't continue

An attempt is made to continue a

program that:

1. has halted due to an error

2. has been modified during a break
in execution, or 3. does not
exist.

Undefined user function
FN function is called before defining
it with the DEF FN statement.

Device I/0 error

An I/0 error occurred on a cassette,
disk, printer or CRT operation. It

is a fatal error; i.e., BASIC cannot
recover from the error.

Verify error
The current program is different from
the program saved on that cassette.

No RESUME
An error trapping routine is entered
but contains no RESUME statement.

RESUME wihout error

A RESUME statement is encountered
before an error trapping routine is
entered.

Unprintable error
An error message is not available for
the error condition which exists.

24

25

26

50

51

52

53

This is usually caused by an ERROR
with an undefined error code.

Missing operand
An expression contains an operator
with no operand following it.

Line buffer overflow
An entered line has too many
characters.

Unprintable errors
These codes have no definitions.
Should be 49 reserved for future
expansion in BASIC.

FIELD overflow

A FIELD statement attempts to
allocate more bytes than were
specified for the record

length of a random file in the OPEN
statement. Or, the end of the FIELD
buffer is encountered while doing
sequential I/0 (PRINT#, INPUT#) to a
random file.

Internal error

An internal malfunction has occured.
Report to Microsoft the conditions
under which the message appeared.

Bad file number

A statement or command references a
file with a file number that is not
OPEN or is out of the range of file
numbers specified by MAXFILES
statement.

File not found

A LOAD, KILL, or OPEN statement
references a file that does not
exists in the memory.

285

286

54

55

56

57

58

59

60

61

255

File already open

A sequential output mode OPEN is
issued for a file that is already
open; or a KILL is given for a file
that is open.

Input past end

An INPUT statement is executed after
all the data in the file has been
INPUT, or for null (empty) file. To
avoid this error, use the EOF
function to detect the end of file.

Bad file name

All illegal from is used for the file
name with LOAD, SAVE, KILL, NAME,
etc.

Direct statement in file

A direct statement is encountered
while LOADing an ASCII format file.
The LOADing is terminated.

Sequential after PUT
Parameter after PUT command is input
wrongly.

Sequential I/0 only
A statement to random access is
issued for a sequential file.

File not OPEN
The file specified in a PRINT#,
INPUT#, etc. hasn't been OPENed.

Unprintable error

These codes have no definitions.
Users may place their own error code
definitions at the high end of this
range.

DISK BASIC

1. TECHNICAL INFORMATION

For each disk drive that is mounted, the
following information is kept in memory:

A. Drive Information

1. Attributes

2. Track Number

3. Modification
Counter

4, Number of
Free
GClusters

Drive attributes are read from the
information sector when the

drive is mounted, and may be
changed with the SET statement.
Current attributes may be

examined with the ATTR$

function.

This is the current track while
the disk is mounted. Otherwise,
track number contains 255 as a
flag that the disk is not
mounted.

This counter is incremented
whenever an entry in the File
Allocation Table is changed.
After a given number of changes
has been made, the File
Allocation Table is written to
disk.

This is calculated when the
drive is mounted, and updated
whenever a file is deleted or a
cluster is allocated.

287

5

288

File

Allocation

Table

The File Allocation Table has a
one-byte entry for every cluster
allocated on the disk. If

the cluster is free, this entry
is 255. If the cluster is the
last one of the file, this entry
is 300 (octal) plus the number
of sectors that were used from
this cluster. Otherwise, the
entry is a pointer to the next
cluster of the file. The File
Allocation Table is read into
memory when the drive is
mounted, and updated:

* When a file is deleted

* When a file is closed

* When modifications to the
table total twice the number
of sectors in a cluster
(this can be changed in
custom verions)

* When modifications to the
table have been made and the
disk head is on (or passes)
the directory track

Directory Format

On the diskette, each sector of the
directory track contains eight file
entries. Each file entry is 16 bytes
long and formatted as follows:

Bytes Usage

0-8 Filename, 1 to 9
characters. The first

character may not be 0O to
255,

9 Attributed:

&0 200 Binary file

&0 10 force read after
write check

&0 20 write protected file
Excluding &0 200, these
bits are the same for the
disk attributed byte which
is the first byte of the
information sector.

10 Pointer into File
Allocation Table to the
first cluster of the file's
cluster chain.

11-15 Reserved for future
expansion.

If the first byte of a filename is
zero, that file entry slot is free.
If the first byte is 255, that slot
is the last occupied slot in the
directory, i.e. this flags the end of
the directory.

File Block

Each file on the disk has a file
block that contains the following
information:

1. File Mode (byte 0)

This is the first byte (byte 0)
of the file block, and its
location may be read with VARPTR
(#filenumber). The location of
any other byte in the file block
is relative to the file mode
byte. The file mode byte is one
of the following:

289

&01 Input only
&02 Output only
&04 File mode
&010 Append mode
&020 Delete file
&0200 Binary save

NOTE: It is not recommended that
the user attempts to
modify the next four bytes
of the File Allocation
Table. Many unforeseen
complications may result.

2. Pointer to the File Allocation
Table entry for the first cluster
allocated to the file (+1)

3. Pointer to the File Allocation
Table entry last cluster accessed
(+2)

4, Last sector accessed (+3)
5. Disk number of file (+4)

6. The size of the last buffer read
(+5). This is 128 unless the
last sector of the file is not
full (i.e., CTRL-Z)

7. This current position in the
buffer (+6). This is the offset
within the buffer for the next
print or input.

8. File flag (+7), is one of the
following:

290

&0100 Read after write check
&020 File write protected
&010 Buffer changed by PRINT
&04 PUT has been done.
PRINT/INPUT have errors
until a GET is done &02
Flag buffer is empty

9. Terminal position for TAB
function and comma in PRINT
statement (+8).

10. Beginning of sector buffer (+9),
128 bytes in length.

Disk Allocation

With Disk BASIC, storage space on the
diskette is allocated beginning with
cluster closest to the current
position of the head. This method is
optimized for writing. Custom
versions can be optimized for
reading. Disk allocation information
is placed in memory when the disk is
mounted and is periodically written
back to the disk. Because this
allocation information is kept in
memory, there is no need of index
blocks for random files, and there is
no need to distinguish between random
and sequential files.

Filename

A file is a collection of
information, kept somewhere other
than inside the computer's memory

area, that stores programs.

There are two different ways to
distinguish files, break them into

291

292

categories and label them properly.
One is called a '"'filename'" and the
other is called a '"'filenumber'.
These have been discussed in section
3.13.1.

The format for disk filename is:
drive # : filename .
extension

File Format

Each file requires 137 bytes: 9
bytes plus the 128-byte buffer.
Because the File Allocation Table
keeps random access information for
all files, random and sequential
files are identical on the disk. The
only distinction is that sequential
files have a CTRL-Z (&032) as the
last character of the last sector.
When this sector is read, it is
scanned from the end for a non-zero
byte. If this byte is CTRL-Z, the
size of the buffer is set so that a
PRINT overwrites this byte. If the
byte is not CTRL-Z, the size is set
so the last null seen is over-
written.

Any sequential file can be copied in
random mode and remain identical. If
a file is written to disk in random
mode (i.e., with PUT instead of
PRINT) and then read in sequential
mode, it will still have proper end
of file direction.

FORMATTING A DISK

In theory, the 5.25" floppy disks
that you have purchased from your
computer dealer are manufactured so
that they can be used with any
microcomputer. However, each
microcomputer manufacturer designs
his own method or format to store
information (data) on a disk. That
is why a program written for one
machine is not necessarily usable on
another machine.

Spectravideo requires a disk to
undergo a process called formatting
to prepare the disk to accept
information sent from the computer to
the disk drive.

Disk formatting is achieved by
running two programs resided in the
SV Extended BASIC Diskette, namely
"svfrmt" and "format'". If you

want to create a diskette which can
be booted automatically, the
"sysgen.bas'" program should be run as
well.

The "svfrmt" utility program, which
runs under the CP/M operating
system, allows you to format a blank
diskette for use either a CP/M
diskette or a SV Extend Disk BASIC
Diskette. The process will only be
completed after the other program
"format'" is run.

The '"format'" program allows you to
format a previously prepared
diskette (using '"svfrmt'') for use as
a SV Extended Disk BASIC Diskette.

293

294

II.

Before mounting a drive with a new
diskette, run BASIC's '"format"
program to initialize the directory
(setting all bytes to 255), set the
information sector to 0O, and set all
the File Allocation Table entries
(except the directory track entry
(254) to "free'(255).

COMMAND AND STATEMENT

The command and statements for BASIC
program files are listed below. Most
of these commands are described in
Chapter 4.

ATTR$ (< drive > [#]

filenumber s filename)
This returns a string of the current
attributes for a drive, currently
open file, or file that need not be
opened.

CVI(< 2-byte string >)

CVS(< 4-byte string >)

CVD(< 8-byte string >)

Numeric values which are read in from
a random disk file are converted from
string to a figure. CVI converts a
2-byte string to an integer. CVS
converts a 4-byte string to a single
precision number. While CVD converts
an 8-byte string to a double
precision number.

DSKI$ (<drive> , <track> ,
<sector>)

This is the complementary function to
the DSKO$ statement. DSSKI$ returns
the contents of a sector (the first
255 bytes) to a string variable name.

DSKO$ (< drive> , <track) ,
<sector)> , < string exp>)

This statement writes the string on
the specified sector. The maximum
length for the string is 256
characters. A string of fewer than
256 characters is zero-filled to the
end.

EOF (< filenumber>»)

Use to test for end-of-file while
INPUTing. Otherwise an "'Input past
end" error message will be echoed.
Return -1 (true) if the end of a
sequential file has been reached.

[L] FILES [< drive number >]
Display the names of the files
residing on a diskette. 1In addition
to the filename the size of each
file, in cluster, is output. (A
cluster is the minimum unit of
allocation for a file, being one half
of a track.)

If < drive number > is omitted, the
names of files on a diskette in drive
1 are listed. The command FILES2
lists those on the diskette in drive
2. LFILES outputs to the line
printer.

Filenames of files created with OPEN
or ASCII SAVE are listed with a space
between its name and extension.
Filename of binary files created with
binary SAVE are listed with a decimal
point between its name and extension.
Files created by the SAVE

< filename > command to save the
current screen image are listed with
a pound sign (#) between the name and
the extension.

295

296

FPOS (< filenumber>)

FPOS returns the number of the
physical sector where filenumber is
located.

GET [#] <filename>>

[, <record number>]

Read a record from a random disk file
into a random buffer. If record
number is omitted the next record
after the last GET is read into the
buffer. The largest possible record
number is 32767. After a GET
statement, INPUT# and LINE INPUT# may
be done to read characters from
random file buffer.

INPUT#

If the buffer is empty, write it; if
the "buffer changed" flag is set,
then read the next buffer.

IPL "RUN" + CHR$(34) + "1:
{filename)» "

The IPL command instructs Disk BASIC
to immediately execute the program
you select when the Disk BASIC
Diskette is booted.

KILL " <device descriptor)

< filename> "

Delete a file from the disk. This
may be program file, sequential file
or random-access data file.

LOAD " <device descriptor)>
{filename> " [,R]

Load the specified program from the
diskette into the computer's memory,
and delete the current contents of
memory. The option '"R'" permits you
to run the program immediately after
it is loaded that is equivalent to
RUN. Also open data files are kept
open.

LOC (< filenumber>)

With random disk files, LOC returns
the record number just read or
written from a GET or PUT. If the
file was opened but no disk I/O has
been performed yet, LOC returns a
"0". With sequential files, LOC
returns the number of sectors (128
byte blocks) read from or written to
the file since it was OPENed.

LSET <string variable>
<string exp>

RSET <string variable)
<{string exp>

Move data from memory to a random
file buffer, in preparation for a PUT
statement. If <string exp>
requires fewer bytes than were
FIELDed to < string variable > , LSET
left-justifies the string in the
field and RSET right-justifies the
string. Spaces are used to pad the
extra position. If the string is too
long for the field, characters are
dropped from the right. Numeric
values must be converted to strings
before they are LSET or RSET. LSET
or RSET may also be used with a non-
fielded string variable to left-
justify or right-justify a string in
a given field.

I

I

MAXFILES = < number of files)>
To specify the maximum number of
files opened at a time.

MERGE" <device descriptor)
{filename> "

Load the program from diskette into
memory, but does not delete the
current contents of memory. The
program line numbers on diskette are
merged with the line numbers in

297

298

memory. If two lines have the same
number, only the line from the
diskette program is saved. After a
MERGE command, the ''merged'" program
resides in memory, and BASIC returns
to command level. The MERGE command
only merges files previously saved
with the "A" option (ASCII files
only). It does not merge machine
code files or compressed binary
format files.

MKI$ (< integer exp>)

MKS$ (< integer exp >)

MKD$ (< integer exp >)

Any numeric value that is placed in a
random file buffer with a LSET or
RSET statement is converted to a
string. MKI$ converts an integer to
a 2-byte string. MKS$ converts a
single precision number to a 4-byte
string. MKD$ converts a double
precision number to an 8-byte string.

NAME " <device descriptor>
{filename> " AS "

<device descriptor)>

<{filename> "

Rename a diskette file which may be
program files, random files or
sequential files. Only the filename
is changed, the file is not modified
and it remains in the same space and
position on the diskette.

OPEN < filename> [FOR < mode)>] AS
[#] < filenumber)>

To prepare a device for I/0
operations in a file structure mode;
where < mode> 1is one of the
followings: INPUT, OUTPUT,
APPEND.

The mode determines only the initial
positioning within the file and the
actions to be taken if the file does
not exist. The action taken in each
mode 1is:

INPUT The initial position is at
the start of the file. An
error is returned if the file
is not found.

OUTPUT The initial position is at
the start of the file. A
new file is always created.

APPEND The initial position is at
the end of the file. An
error is returned if the file
is not found.

If the FOR <mode > clause is
omitted, the initial position is at
the start of the file. 1If the file
is not found, it is created. All
variable records are 128 bytes in
length.

When a file is OPENed for APPEND, the
file mode is set to APPEND and the
record number is set to the last
record of the file. The program may
subsequently execute disk I/O
statements that move the pointer
elsewhere in the file. When the last
record is read, the file mode is
reset to FILE and the pointer is left
at the end of the file. Then, if you
wish to append another record,
execute GET# <{n> , LOF(<n>)

This positions the pointer at the end

of the file in preparation for
appending.

299

300

At any one time, it is possible to
have a particular filename OPEN under
more than one filenumber. This
allows different attributes to be
used for different purposes. Or, for
program clarity, you may wish to use
different filenumbers for different
methods of access. Each filenumber
has a different buffer, so changes
made under one file are not
accessible to (or affected by) the
other numbers until the record is
written, e.g., GET# <n> ,

LOC(<n)>).

PRINT#

Set the "buffer changed" flag. If
the buffer is full, write it to disk.
Then, if the end of file has not been
reached, read the next buffer.

PUT [#] < filenumber >

[, ¢ record number>]

To write a record from a random
buffer to a random disk file. 1If
{record number) is omitted the
record will have the next available
record number after the last PUT.

The largest possible record number is
32767 while the smallest is 1.

PRINT# and PRINT# USING may be used
to put characters in the random file
buffer before a PUT statement. Any
attempt to read or write past the end
of the buffer causes a '"Field
overflow" error.

RUN " < device descriptor>»

{ filename > "

Load the program from diskette into
memory and run it. This command
deletes the contents of memory and
closes all files before loading the
program.

SAVE " < device descriptor >

{ filename> "[,A]

Write the program to diskette that is
currently residing in memory. Option
"A" writes the program as a series of
ASCII characters. Otherwise BASIC
uses a compressed binary format. The
"A" option requires a great deal more
diskette storage space. It is mainly
used for merging programs and
transmitting files from one computer
to another via a communication link.

SET <drived> [,[#] < filenumber)]
[< filename>], { attribute string)
The SET statement determines the
attributes of the currently mounted
disk drive, a currently open file or
a file that need not be opened.

An attribute string is a string of
characters that determines what
attributes are set. It is confined
to one of the followings:

R Read after write

P Write protect
Attributes are assigned in the
following order:

1. SET <drive ,
{attribute string >
This statement sets the current
attributes for the disk. The
attributes are permanently
recorded.

2. When a file is created, the
permanent file attributes
recorded on the disk will be the
same as the current drive
attribute.

301

302

11z

3. SET <filename)d» ,
{attribute string >
This statement changes the
permanent file attributes that
are stored in the directory entry
for that file. It does not
affect the drive attributes.

4. When an existing file is OPENed,
the attributes of the filenumber
are those of the directory entry.

5. SET# <filenumberd»® ,
{attribute string>
This statement changes the
attributes for that filenumber
but does not change the directory
entry.

SEQUENTIAL DATA FILES

There are two different types of
diskette data files that may be
created and used by a BASIC program.
One is a '"'sequential file'" and the
second is a ''random access file''.

Sequential files are easier to create
than random files, but are limited in
speed and flexibility when it comes
to accessing data. The data is
written sequentially, that is one
item after the other, in the order it
is sent to the diskette. It is
loaded back into the computer in the
same way.

The following steps must be included
in a program to create and access a
sequential file.

1. OPEN the file for output (from
the computer to the disk drive)
or appending (adding to it).

2. WRITE data to the file using
the PRINT# command (or other
commands).

3. CLOSE the file after you have
written to it. To read data
from a file you must OPEN it
again for input (from the disk
drive into the computer).

DEMO#1

The first demonstration program
highlights the following four
fundamental commands:

OPEN

CLOSE
PRINT
INPUT

10
20
30
40
50
60
70
80
90

OPEN "'1"DEMO1'" FOR OUTPUT AS #1
A = 10: B = 20

C = 30

PRINT#1,A;B;C

CLOSE#1

OPEN "1:DEMO1'" FOR INPUT AS #1
INPUT#1,A,B,C

PRINT A,B,C

CLOSE#1

This program will save the numbers
10, 20 and 30 on the disk then read
them and print them on the screen.
Here's why:

303

304

Line 10 instructs the computer to
OPEN (create) a file on drive 1
called DEMO#1 to which we will
output, or write information. The #1
at the end of line 10 is the
filenumber for the demo#l file.

If you wish to open more than one
file at a time, you must specify in
your program how many files you wish
to open. To specify the maximum
number of files you will open at
once, use the MAXFILES command.
For example:

MAXFILES = 2

Line 40 is the one that actually
instructs the computer to write them
on the disk, and line 50 closes the
demo#1 file (filenumber 1).

On line 60 the computer is instructed
to reopen the file to be able to read
the information back into the
computer. Notice that the filenumber
again is #1.

Line 70 causes the computer to read
the information back into the
computer, and line 80 prints out the
specified variables. Line 90 closes
the demo#1 file.

DEMO#2

This program illustrates the LINE
INPUT# command.

10
20
30
40
50
60
70
80

OPEN "1:DEMO2" FOR OUTPUT AS #1
A$ "THIS IS A DEMONSTRATION"
B$ = "THIS IS PART OF IT TOO"
PRINT#1,A$,B$

CLOSE#1

OPEN"1:DEMO2" for input as #1
LINE INPUT#1, A$

CLOSE#1

This program writes the message
contained on lines 20 and 30 on the
disk, then reads it back and prints
it on the screen. The new command
line input# appears on line 70. This
command reads an entire line (up to
254 characters), without delimeters,
from a sequential file to a string
variable.

305

DEMO#3

This program demonstrates how to
append new information to an existing
sequential file.

10 OPEN"1:DEMO 3" FOR OUTPUT AS #1
20 A$ = "THIS IS A DEMONSTRATION"
30 B$ = "THIS IS PART OF IT TOO"
40 PRINT#1, A$, B$

50 CLOSE#1

60 C$ = 'SO IS THIS"

70 OPEN'1:DEMO3" FOR APPEND AS #1
80 PRINT#1,C$

90 CLOSE#1

100 OPEN ''1:DEMO3" FOR INPUT AS #1
110 LINE INPUT#1,D1$

120 LINE INPUT#1,C1$

130 PRINT D1$: PRINT C1$

140 CLOSE#1

Lines 10-50 are the same as those in
the demo#2 program above. Lines 70-
90 reopen the demo#3 file and write
the message contained in G$. Then
lines 100-140 open data file demo#3,
then read in D1$ (which consist of A$
and B$) and C1$ (which consists of
C$) and then print D1$ and C1$.

306

DEMO#4

This program demonstrates the last
major command needed for sequential
data file creation and access. The

command is EOF, which is the
abbreviation for "End of File'.

10 OPEN'"1:DEMO4" FOR OUTPUT AS #1
20 FOR A = 0 TO 50

30 PRINT#1,A

40 NEXT A

50 CLOSE#1

60 OPEN'1:DEMO4" FOR INPUT AS #1
70 IF EOF(1) THEN GOTO 120

80 INPUT#1,A

90 PRINT A

100 GOTO 70

110 GLOSE#1
120 PRINT"ALL DONE"

This program writes the numbers 0-50
into a file and then reads them back
and prints them on the screen. It
prints the message "ALL DONE" when it
finishes. Delete line 70 from the
program, change line 100 to read
"GOTO 80" and then run the program.

The following error message will
greet you:

INPUT PAST END IN 80

After the computer prints the last

item in the filenumber 50-it returns
to the file looking for more data to
read because line 100 sent it to line
80 which tells it to read. But since

307

308

Iv.

there is no more data left in the
file, you are told that you tried to
input (transfer from disk to
computer) past the end of the file.

The EOF function tests to see whether
or not the end of a file is reached.
If the end of a file has been reached
(true) then the value that EOF
returns (transmits) to the program is
one (1). A zero (0) will be returned
if the end of the file has not been
reached.

This is what line 70 does: if the
end of the file has been reached,
then goto 120. Before each item is
read, the EOF tests to see if the

end of file has been reached. 1If it
has not been reached (the false or
zero condition), the program
continues to line 80. However if the
EOF test reports a true (1) condition
then the program jumps to line 120
and prints the "ALL DONE" message
rather than the "Input past end"
error message.

RANDOM ACCESS FILES

Creating and accessing random files
requires more programming steps than
is the case with sequential files.
Random files are stored in the
tokenized format while a sequential
file is stored as ASCII characters.

The biggest advantage of random files
is that data can be accessed anywhere
on the diskette. This means that,
unlike sequential files, it is not
necessary to read through all the
files one after another until the

file you desired is found. This is
so because the information that
comprises a random file is stored and
accessed in distinct units called
"records'", and each record is
numbered.

The following programming steps are
required to create a random file.

1. OPEN a file for random access.

2. The data must first be moved from
the program area of memory to a
random buffer prior to writing it
on a disk. The FIELD command
allocates space for the data in
the random buffer.

3. Use the LSET OR RSET commands to
position the data in the random
buffer.

4, Write the data from the buffer to
the diskette using the PUT
statement. You need not close a
random file before accessing
(reading) the information back
into the computer (as was the case
with sequential files).

The following programming steps are
required to access a random file.

1. OPEN a random file, if it was
previously closed.

2. Use the FIELD statement to
allocate space in the random
buffer, if the file was previously
closed.

3. Use the GET command to move the

desired record into the random
buffer.

309

DEMO#5

10 INPUT"CUSTOMER NAME:'";Q$

20 INPUT"CITY:'";R$

30 OPEN"1:DEMO5" AS #1

40 FIELD #1, 20 AS N$, 10 AS A$

50 LSET N$ = Q$

60 LSET A$ = R$

70 PUT#1,18

80 CLOSE#1

90 OPEN"1:DEMO5" AS #1

100 FIELD #1, 20 AS N$, 10 AS A$

110 GET #1,18

120 PRINT N$: PRINT A$

130 CLOSE#1
This program is the beginning of a
database to hold customer names and
their cities. It could be written
as:

10 INPUT'"CUSTOMER NAME:'";Q$

20 INPUT"CITY:'";R$

30 OPEN"1:DEMO5' AS #1

40 FIELD #1, 20 AS N$, 10 AS A$

50 LSET N$ = Q%

60 LSET A$ = R$

70 PUT#1,18

80 GET#1,18

90 PRINT N$: PRINT A$

100 CLOSE#1

310

Here is how the program works:

Lines 10 and 20 store the customer
information in strings Q$ and RS$.

Line 30 opens demo#5. Line 40
allocates the space for the
information about the customers in a
random buffer. It allocates 20
positions (bytes) for N$, and 10
positions for A$. N$ and A$ are the
string variables in the string buffer
that will hold the information about
the customers that was originally in

Q$ and R$.

The LSET commands in lines 50 and 60
move the data from the Q$ and R$
variables and places them into the
string variables, N$ and A$ which are
in the random buffer. Line 70 writes
the record (the data) from the random
buffer to the data file. The number
18 is the number of the record that
we have arbitrarily chosen. You
should be careful when you number
your records because organization is
the key to moving the data around
among the program area, the random
buffer and the random file. The GET
command reads the data back into the
random buffer from a random file.

The LSET command justifies the string
variable to the left, and the RSET
command justifies it to the right.

DEMO#6

Our previous program (demo#5) used
only string variables. However,
there will probably be many
situations where you need to store
numerical information in a random
access file too. Before doing so,
you must add on two extra programming
steps. The first step coverts a
numeric type value into a stirng

311

type value before you write the data
to the diskette. The second extra
step converts the string variable
type back into its numeric value.

The following program demonstrates
two of the commands that perform this
conversion.

10
20
30
40
50
60
70
80
90
100
110
120
130

INPUT''CUSTOMER NAME:';GUST$
INPUT"CITY:";CITY$
INPUT"PHONE NUMBER:'";TEL
TEL$ = MKD$(TEL)

OPEN '"1:DEMO6'" AS #1
FIELD#1, 20 AS N$, 10 AS A$, 8 AS T$
LSET N$ = CUST$

LSET A$ = CITY$

LSET T$ = TEL$

PUT#1, 18

GET#1, 18
T = CVD(T$)
PRINT N$: PRINT A$: PRINT T

312

This program writes the customer's
name, city and telephone number on
the disk, reads it back, and prints
it on the screen. The new commands
introduced in this program are on
lines 80 and 110. Line 80 uses the
MKD$ command to convert the numeric
data stored in 'tel" into a string
variable called t$. This allows the
telephone number to be written to
the disk along with the other
customer information which was typed
in string form by the user. Later,
after the information from the random
file has been read, the CVD command
converts the string varaible T$ into
a numeric value which is stored in
HT”.

Field
overflow

Internal
error

ADVANCED USES OF FILE BUFFERS

Information may be passed from one
program to another by FIELDing it
to an unopened file number (not
#0). The FIELD buffer is not
cleared as long as the file is not
OPENed.

The FILEDed buffer for an unopened
file can also be used to format
strings. TFor example, an 80-
character string could be placed
into a FIELDed buffer with LSET.
The strings could then be accessed
as four 20-character strings using
their FIELDed variable names. For
example, instead of using the
statement

FIELD#1, 80 AS A$

The alternative is
FIELD#1, 20 AS Al$, 20 AS A2$,
20 AS A3$, 20 AS A4$

FIELD#0 may be used as a temporary
buffer, but note that this buffer
is cleared after each of the
following commands: FILES, LOAD,
SAVE, MERGE, RUN, DSKI$, DSKO$,
OPEN.

DISK BASIC EEROR MESSAGE

A FIELD statement is attempting to
allocate more bytes than were
specified for the record length of a
random file.

An internal malfunction has occured
in Disk BASIC. Report to Microsoft
the conditions under which the
message appeared.

313

Bad file
number

File not
found

File already
open

Disk 1/0
error

File alveady
exists
Disk full

Input past
end

Bad recoxd
numbey

Direct

statement in
file

Too many
file

314

A statement or command references a
file with a file number that is not
OPEN or is out of the range of file
numbers specified at initialization.

A LOAD, KILL or OPEN statement
references a file that does not exist
on the current disk.

A sequential output mode. OPEN is
issued for a file that is already
open; or a KILL is given for a file
that is open.

An I/0 error occurred on a disk I/O
operation. It is a fatal error,
i.e., the operating system cannot
recover from the error.

The filename specified in a NAME
statement is identical to a filename
already in use on the disk.

A disk storage space is in use.

An INPUT statement is executed after
all the data in the file has been
INPUT, or for a null (empty) file.
To avoid this error, use the EOF
function to detect the end of file.

In a PUT or GET statement, the record
number is either greater than the
maximum allowed (32767) or equal to
0.

A direct statement is encountered
while LOADing an ASCII-format file.
The LOADing is terminated.

An attempt is made to create a new
file (using SAVE or OPEN) when all
255 directory entries are full.

CONVERTING PROGRAMS TO 8P
PERSONAL COMPUTER BASIC

Since SVI Personal Computer BASIC is very similar to
many microcomputer BASIC's, the SVI Personal
Computer will support programs written for a wide
variety of microcomputers. If you have program
written in a BASIC other than SVI Personal Computer
BASIC, some minor adjustments may be necessary
before running them with SVI Personal Computer
BASIC. Here are some specific things to look for
when converting BASIC programs.

File 1/0 In SVI Personal Computer BASIC, you
read and write information to a file
on diskette or cassette by opening
the file to associate it with a
particular filenumber; then using
particular I/0 statements which
specify that filenumber. 1I/0 to
diskette and cassette files is
implemented differently in other
BASIC's. Refer to section 3.13.1 for
details on data file and to section
4.2.1.33 for "OPEN" statement. Also,
in SVI Personal Computer BASIC,
random file records are automatically
blocked as appropriate to fit as many
records as possible in each sector.

Graphics How you draw on the screen varies
greatly between different BASIC's.
Refer to the discussion of graphics
in section 3.13.2 for specific
information about SVI Personal
Computer graphics.

315

316

=

In SVI Personal Computer BASIC,
logical operations (NOT, AND, OR,
XOR, IMP, and EQV) are performed
bit-by-bit on integer operands to
produce an integer result. In some
other BASICs, the operands are
considered to be simply "true" (non-
zero) or ''false" (zero) values, and
the result of the operation is either
true or false. As an example of this
difference, consider this small
program:

10 A=9: B=2
20 IF A AND B THEN PRINT "BOTH A
AND B ARE TRUE"

This example in another BASIC will
perform as follows: A is non-zero,
so it is true; B is also non-zero, Sso
it is also true; because both A and B
are true, A AND B is true, so the
program prints: "BOTH A AND B ARE
TRUE".

However, SVI Personal Computer BASIC
calculates it differently: A is 1001
in binary form, and B is 0010 in
binary form, so A AND B (calculated
bit-by-bit) is 0000, or zero; zero
indicate false, so the message is not
printed, and the program continues
with the next line.

This can affect not only tests made
in IF statements, but calculations as
well. To get similar results, recode
logical expressions like the
following:

10 A=9: B=2

20 IF (A< > 0) AND (B 2>0)
THEN PRINT "BOTH A AND B ARE
TRUE"

i¥...THEN

The IF statement in SVI Personal
Computer BASIC contains an optional
ELSE clause, which is performed when
the expression being tested is false.
Some other BASICs do not have this
capability. For example, in another
BASIC you may have:

10 IF A=B then 30

20 PRINT '"NOT EQUAL" : GOTO 40
30 PRINT "EQUAL"

40 REM CONTINUE

This sequence of code will still
function correctly in SVI Personal
Computer BASIC, but it may also be
conveniently recoded as:

10 IF A=B THEN PRINT "EQUAL'" ELSE
PRINT '"NOT EQUAL"
20 REM CONTINUE

SVI Personal Computer BASIC also
allows multiple statements in both
the THEN and ELSE clauses. This may
cause a program written in another
BASIC to perform differently. For
example:

10 IF A=B THEN GOTO 100 : PRINT
""NOT EQUAL"
20 REM CONTINUE

In some other BASICs, if the test A=B
is false, control branches to the
next statement; that is, if A is not
equal to B, "NOT EQUAL" is printed.
In SVI Personal Computer BASIC, both
GOTO 100 and PRINT '"NOT EQUAL'" are
considered to be part of the THEN
clause of the IF statement. If the
test is false, control continues with
the next program line; that is, to

317

MAT Functions

Mulripie
Assignments

Multiple
Statements

PEEKs and POKEs

318

line 20 in this example. PRINT '"NOT
EQUAL" can never be executed.

This example can be recoded in SVI
Persoanl Computer BASIC as:

10 IF A=B THEN 100 ELSE PRINT ''NOT
EQUAL"
20 REM CONTINUE

Program using the MAT functions
available in some BASIC's must be
rewritten using FOR...NEXT loops to
execute properly.

Some BASIC's allow statements of the
form:

10 LET B=C=0

To set B and C equal to zero. SVI
Personal Computer BASIC would
interpret the second equal sign as a
logical operator and set B equal to
-1 if C equalled 0. 1Instead, convert
this statement to two assignment
statements:

10 C=0:B=0

Some BASIC's use a backslash () to
seperate multiple statements on a
line. With SVI Personal Computer
BASIC, be sure all statements on a
line are seperated by a colon(:).

Many PEEKs and POKEs are dependent on
the particular computer you are
using. You should examine the
purpose of the PEEKs and POKEs in a

String Handling

String Length:

Concatenations

Substrings :

program in another BASIC, and
translate the statement so it
performs the same function on the SVI
Personal Computer.

Since strings in SVI Personal
Computer BASIC are all variable
length, you should delete all
statements that are used to declare
the length of strings. A statement
such as DIM A$(I, J), which
dimensions a string array for J
elements of length I, should be
converted to the SVI Personal
Computer BASIC statement DIM A$(J).

Some BASIC's use a ccmma or ampersand
for string concatenation. Each of
these must be changed to a plus sign,
which is the operator for SVI
Personal Computer BASIC string
concatenation.

In SVI Personal Computer BASIC, the
MID$, RIGHT$, and LEFT$ functions are
used to take substrings of strings.
Forms such as A$(I) to access the Ith
character in A$, or A$(I,J) to take a
substring of A$ from position I to
position J, must be changed as
follows:

Other BASIC SVI Personal
Computer BASIC

X$=A$(1) X$=MID$(A$,I,1)
X$=A$(1,J) X$=MID$(A$,I,J-TI+1)

319

Relational
Expressions

Remarks

Rounding of
Numbers

320

If the substring reference is on the
left side of an assignment and X$ is
used to replace characters in A$,
convert as follows:

Other BASIC SVI Perosnal
Computer BASIC

A$(I)=X$ MID$(A$’I;1)=X$
A$(1,J)=X$ MID$(A$,I,J-I+1)=X$

In SVI Personal Computer BASIC, the
value returned by a relational
expression, such as A B, is either
-1, indicating the relation is true,
or 0, indicating the relation is
false. Some other BASICs return +1
to indicate true. If you use the
value of a relational expression in
an arithmetic calculation, the
results are likely to be different
from what you want.

Some BASIC's allow you to add remarks
to the end of a line using the
exclamation point (!). Be sure to
change this to a single quote (')
when converting to SVI Personal
Computer BASIC.

SVI Personal Computer BASIC rounds
single- or double-precision numbers
when it requires an integer value.
Many other BASIC's truncate instead.
This can change the way your program
runs, because it affects not only
assignment statements (for example,
1%=2.5 results in I% equal to 3), but
also affects function and statement
evaluations (for example, TAB(4.5)
goes to the fifth position, A(1.5) is

the same as A(2), and X=11.5 MOD &4
will result in a value of 3 for X):
Note in particular that rounding may
cause SVI Personal Computer BASIC to
select a different element from an
array than another BASIC - possibly
one that is out of range!

Sounding the Some BASICs require PRINT CHR$(7) to

Bell send an ASCII bell character. In SVI
Personal Computer BASIC, you may
replace this statement with BEEP,
although it is not required.

Other The BASIC language on another
computer may be different from the
SVI Personal Computer BASIC in ways
other than those listed here. You
should become familiar with SVI
Personal Computer BASIC as much as
possible in order to be able to
appropriately convert any function
you may require.

321

322

MATHEMATICAL FUNCTIONS

Functions that are not available in Microsoft BASIC
can be derived by using the following formulae:

Function

Logarithm to
base B

Secant
Cosecant
Cotangent
Inverse sine
Inverse cosine

Inverse secant
Inverse Cosecant

Inverse

Contangent
Hyperbolic
Hyperbolic
Hyperbolic

since
cosine
tangent
Hyperbolic secant
Hyperbolic
cosecant
Hyperbolic
cotangent
Inverse
hyperbolic
Inverse
hyperbolic
Inverse
hyperbolic
Inverse
hyperbolic secant
Inverse hyperbolic
cosecant

Inverse hyperbolic
cotangent

sine

cosine

tangent

Equivalent
LOGB(X)
SEC(X)
CSC(X)
COT (X)
ARCSIN(X)
ARGCOS (X)
ARGCSEC(X)
ARCCSC(X)
ARCCOT (X)
SINH(X)
COSH(X)
TANH(X)

SECH(X)
CSCH(X)

COTH(X)

ARCSINH(X)
ARCCOSH(X)
ARCTANH(X)
ARCSECH(X)
ARCCSCH(X)

ARCCOTH(X)

il

LOG(X)/LOG(B)

1/C0S(X)
1/SIN(X)
1/TAN(X)

= ATN(X/SQR(1-X*X)

Il

]

Il

Il

1.5708-ATN(X/SQR
(1-X*X)
ATN(SQR(X*X-1))
+(SGN(X)-1)*1.5708
ATN(1/SQR(X*X-1))
+(SGN(X)-1)*1.5708
1.5708-ATN(X)

(EXP(X)-EXP(-X))/2
(EXP(X)+EXP(-X))/2
(EXP(X)-EXP((-X))/
(EXP(X)+EXP(-X))

2/ (EXP (X)+EXP(-X))
2/(EXP(X)-EXP(-X))

(EXP(X)+EXP(-X))/
((EXP(X)-EXP(-X))
LOG(X+SQR(X*X+1))

LOG (X+SQR (X*X-1)
LOG((1+X)/(1=-X))/2
LOG ((1+SQR
(1=-X*X)) /X)

LOG ((1+SGN(X)*SQR
(14X%X)) /X)
LOG((X+1)/(xX-1))/2

323

324

ASCIli CHARACTER CODE

DECIMAL HEXADECIMAL

CODE CODE DEFINITION
1 1 [CONTROL J+A
2 2 [CONTROL]+B
3 3 [CONTROLJ+C
4 4 [CONTROL]+D
5 5 [CONTROL]+E
6 6 [CONTROL]+F
7 7 [CONTROL]+G
8 8 [CONTROL] +H
9 9 [CONTROLJ+1
10 A [CONTROL]+J
11 B [CONTROL] +K
12 C [CONTROL]+L
13 D [CONTROL] +M
14 E [CONTROL]+N
15 F [CONTROL]+0
16 10 [CONTROL]+P
17 11 [CONTROL]+Q
18 12 [CONTROL]+R
19 13 [CONTROL J+S
20 14 [CONTROL]+T
21 15 [CONTROL]+U
22 16 [CONTROL]+V
23 17 [CONTROL J+W
24 18 [CONTROL]+X
25 19 [CONTROL J+Y
26 1A [CONTROL]+2
27 1B ESCAPE

28 1C CURSOR RIGHT
29 1D CURSOR LEFT
30 1E CURSOR UP
31 1F CURSOR DOWN
32 20

33 21 !

34 22 "

35 23 #

36 24 $

325

DECIMAL HEXADECIMAL

CODE CODE DEFINITION
37 25 %
38 26 &
39 27 !
40 28 (
41 29)
42 2A *
43 2B +
44 2C ,
45 2D -
46 2E .
47 2F /
48 30 0
49 31 1
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A :
59 3B 3
60 3C <
61 3D =
62 3E >
63 3F ?
64 40 @
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
72 48 H
73 49 I
74 4A J
75 4B K
76 4G L

326

DECIMAL HEXADECIMAL

CODE CODE DEFINITION
77 4D M
78 4E N
79 4F 0
80 50 P
81 51 Q
82 52 R
83 53 S
84 54 T
85 55 U
86 56 \Y
87 57 W
88 58 X
89 59 Y
90 5A Z
91 5B [
92 5C \
93 5D]
94 5E A
95 5F _
96 60 N
97 61 a
98 62 b
99 63 c
100 64 d
101 65 e
102 66 f
103 67 g
104 68 h
105 69 i
106 6A j
107 6B k
108 6C 1
109 6D m
110 6E n
111 6F o
112 70 p
113 71 q
114 72 r
115 73 s
116 74 t

327

DECIMAL HEXADECIMAL

CODE CODE DEFINITION
117 75 u
118 76 v
119 77 w
120 78 x
121 79 y
122 7A z
123 7B

124 7C

125 7D

126 7E

127 7F

128 80

129 81

130 82

131 83

132 84

133 85

134 86

135 87

136 88

137 89

138 8A

139 8B

140 8C

141 8D

142 8E

143 8F

144 90

145 91

146 92

147 93

148 9%

149 95

150 9%

151 97

152 98

153 99

154 9A

155 9B

156 9¢

328

DECIMAL HEXADECIMAL

CODE CODE DEFINITION
157 9D

158 9E

159 9F

160 AO (H
161 Al B
162 A2 el
163 A3 H
164 Al k]
165 A5 N
166 A6 &
167 A7 D
168 A8 0
169 A9 (.
170 AA Q
171 AB o
172 AC B
173 AD .l
174 AE 0
175 AF a
176 BO (3
177 B1 (d
178 B2 tH
179 B3 =
180 B4)
181 B5 3
182 B6 td
183 B7 =i
184 B8 &
185 B9 3
186 BA |
187 BB &
188 BC 4
189 BD b2
190 BE N
191 BF o]
192 co &
193 c1 L
194 c2 N
195 c3 3
196 o A

329

DECIMAL HEXADECIMAL

CODE CODE DEFINITION
197 C5 0]
198 c6 @
199 c7]
200 c8 m
201 c9 |
202 CA (4]
203 CB feed
204 cC 4
205 CD 1]
206 CE 4
207 CF @l
208 DO A
209 D1 =
210 D2 [|
211 D3 (]
212 D4

213 D5

214 D6

215 D7

330

CONVERSION TABLE

Decimal Binary Hexadecimal Octal
0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 8 10
9 1001 9 11

10 1010 A 12
11 1011 B 13
12 1100 C 14
13 1101 D 15
14 1110 E 16
15 1111 F 17

331

332

MEMORY ORGANISATION

SVI-318 has 32K RAM: 16K user
addressable RAM and 16K
non-addressable video display RAM.
The 16K user addressable RAM resides
in Page 02 (Bank 0) from hexadecimal
address COOO to FFFF.

SVI-328 has 80K RAM: 64K user
addressable RAM and 16K
non-addressable video display RAM.
32K user addressable RAM resides in
Page 02 (Bank 0) from hexadecimal
address 8000 to FFFF. Another 32K
user addressable RAM resides in Page
21 (Bank 2) from hexadecimal address
0000 to 7FFF.

There is no command to disable the
video RAM. Use either of the
followings to increase the unable
memory size in your program.

(A) FRE (0)

Free force a garbage collection
before returning the number of
free bytes.

(B) CLEAR N1, N2

To set all numeric variables to
zero, all string variables to
null, and to close all open
files; optionally to set the end
of memory and the amount of
stack space.

333

334

i1.

N1 sets the amount of string
space while N2 sets the end
address of memory.

The memory management is bank
and page selection by hardware
control.

The Disk BASIC DOS does not have the
same format structure as the CP/M

Xerox 820.

SVI-318/SVI-328 System

DISK BASIC
MBASIC INTERPRETER (4K)
DISK BASIC DOS (16K)

CP/M 0S8
CP/M 2.2 (20K to 24K)

DISK BASTIC AND CP/M

The start-up memory is Bank O Page 2
(8000H to FFFFH).

In MBASIC ROM interpreter bootstrap,
2K to 4K is reserved for working
area. Therefore, 12815 bytes for
SVI-318 and 29199 bytes for SVI-328
are available to use MBASIC.

For Disk BASIC DOS bytes bootstrap,
8K to 12K is reserved for system
control. Therefore, 4807 bytes for
SVI-318 and 21191 bytes for SVI-328
are available to run Disk BASIC.

USER FREE MEMORY SVI-318 SVI-328
ROM BOOTSTRAP 12815 29199
DISK BASIC DOS 4807 21191

There are two disk operating system:

(A) The Disk BASIC DOS requires 12K
to 16K for DOS utility.

(B) The CP/M 0S requires 20K to 24K
for system control area and
utility.

The 64K user memory for SVI-328 is
available once GCP/M bootstraps.
Since Page 02 and Page 22 are
reserved for Disk BASIC, approximate
32K (Page 02 from 8000H to FFFFH) is
available when you use MBASIC.

In the SVI-318/SVI-328 single user
system, the SWITCH command forces
exchange Page 02 (Bank 0) and Page 22
(Bank 2). However it should power up
with Disk BASIC DOS bootstrap.

If SVI-318 is used, run CP/M with the
dip switches S1, S2 and S5 of 64K RAM
cartridge switched on.

The SVI-803 and the SVI-807 RAM
Expansion Cartridges are used to
expand the user memory up to a full
160K Bytes.

SVI-807 DIP SWITCH SELECTION

SVI-807 SVI-318 SVI-328
Si: BK21 ON/OFF OFF
S2: BK22 ON/OFF ON/OFF
S3: BK31 ON/OFF ON/OFF
S4: BK32 ON/OFF ON/OFF
S5: BKO2 ON*/OFF OFF
S6: 48/32 OFF OFF

335

Note: (1) Only two switches are
allowed to switch on
simultaneously.

(2) BK 02 can be selected

only if 16K RAM Cartridge
is not used.

Memory Map

BANK 0 BANK 1 BANK 2 BANK 3
(FOR CARTRIDGE)
page page page page
o1 1 21 31
ROM ROM 0 RAM RAM
(BASIC) (GAMES)
3FFFH
4000H
ROM ROM 1 RAM RAM
(BASIC) (GAMES)
7FFFH
page page page page
02 BOOOH 12 22 32
RAM 0
(ON BOARD)
ROM 2 RAM RAM
OR
(EXPANSION) (GAMES)
BFFFH
CO00H
RAM 1 ROM 3 RAM RAM
(ON BOARD) (GAMES)
FFFFH

336

Try the following memory bank RAM size test program:

170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
570
580
590
600

REM Memory bank RAM size test program
REM Make sure you have 64K RAM Cartridge
REM One have BK21 on, the other have BK31 on (in 32K option)
REM

CLEAR 10, &HDOOO

1

B2=XHDO42 : B3=&HDO44

FOR K=&HDOOO TO B3

READ A$:POKE K,VAL("&H'"+A$)

NEXT K

DEF USR2=&HDO11 'TEST BK 21

DEF USR3=&HDO2B 'TEST BK 31

!———— INIT RAM AREA ———

FOR I=B2 TO B3+1

POKE I,0

NEXT I

A=USR3(0)

A=USR2(0)

PRINT''BANK 21 =";256*(PEEK(B2+1))+PEEK(B2)
PRINT"BANK 31 ='";256*(PEEK(B3+1))+PEEK(B3)

STOP

REM -—- DATA ———-

DATA 21,00,00 :REM 'CHKSIZ: LD HL,0 ;0-7FFFH
DATA 7E :REM 'CHKSZ1: LD A, (HL) ; READ
DATA 2F tREM ' CPL

DATA 77 :REM ' LD (HL),A ;WRITE
DATA BE tREM ! CP (HL)

DATA 2F :REM ' CPL

DATA 77 :REM ' LD (HL),A ;SAVE BACK
DATA CO +REM ' RET NZ

DATA 23 :REM ' INC HL

DATA 70 :REM ! LD A,H sEXIT FOR HL=8000
DATA FE,80 :REM ! CP 80H

DATA 20,F3 tREM ' JR NZ,CHKSZ1

DATA C9 tREM ' RET sHL=SIZE

' PSG,PORTB: ROMEN1, ROMENO,CAP,BK32,BK31,BK22,BK21,CART
! D7 D6 D5 D4 D3 D2 D1 DO
! IN PSG DATA: 90H

' OUT PSG DATA: 8CH

' OUT PSG LATCH: 88H

|

DATA F3 :REM 'CHK21: DI

DATA 3E,OF :REM LD A,OFH : PORT B

DATA D3,88 :REM OUT (88H),A s LATCH

DATA DB, 90 :REM IN A,(90H) 5 CURRENT BANK COND
DATA 47 :REM LD B,A ; B=OLD BANK COND
DATA E6,FD :REM AND 11111101B ; BANK 21 ON

DATA D3,8C :REM OUT (8CH),A

DATA 21,00,00 :REM LD HL, 0000
DATA CD,00,DO :REM CALL CHKSIZ

'

1

1

'

1

1

! no meaning
1

DATA 22,42,D0 :REM ' LD (BK21),HL

'

'

1

1

t

1

'

'

RESULT IN HL

SAVE RAM SIZE
DATA 78 :REM LD A,B A = ORG BANK COND
DATA D3,8C :REM OUT (8CH),A
DATA FB :REM EI
DATA 09 :REM RET
DATA F3 :REM 'CHK31: DI
DATA 3E,OF :REM LD A,OFH ; PORT
DATA D3,88 :REM OUT (88H) ; LATCH
DATA DB, 90 :REM IN A,(90H)

337

610 DATA 47 :REM LD B,A
620 DATA E6,F7 :REM AND 11110111B BANK 31 ON
630 DATA D3,8C :REM OUT (8CH),A

640 DATA CD,00,DO :REM
650 DATA 22,44,D0 :REM

CALL CHKSIZ
LD (BK31),HL

RESULT IN HL
DATA SAVE

660 DATA 78 +REM LD A,B ORG BANK COND

670 DATA D3,8C :REM OUT (8CH),A

680 DATA FB :REM EI

690 DATA C9 :REM RET

700 DATA 00,00 :REM BK21: DS 2 s MEMORY SIZE OF BANK 21
710 DATA 00,00 :REM BK22: DS 2 ;5 MEMORY SIZE OF BANK 31
720 FOR I=&HDOOO TO B3+1

730 LPRINT HEX$(I);" ";HEX$(PEEK(I))

740 NEXT

338

GLOSSARY

This part of the book explains many of the technical
terms you may run across while programming in BASIC.

absolute
coordinate
form

access btime

accumitlator

accuracy

adapter

address

addressable
point

In graphics, specifying the location
of a point with respect to the origin
of the coordinate system.

The time between the instant, that an
address 1is sent to a memory location
and the instant data returns.

One of several registers which
temporarily store, or "accumulate"
the results of various operations.

The quality of being free from error.
On a machine this is actually
measured, and refers to the size of
the error between the actual number
and its value as stored in the
machine.

A mechanism for attaching parts.

The location of a register, a
particular part of memory, or some
other data source or destination.
Or, to refer to a device or a data
item by its address.

In computer graphics, any point in a

display space that can be addressed.

Such points are finite in number and

form a discrete grid over the display
space.

339

algorithm

alphaumeric

ALU

architecture

array

ASCTT

assembler

BASIC

baud

binary

340

A finite set of well-defined rules
for the solution of a problem in a
finite number of steps.

Pertaining to a character set that
contains letters and digits.

Arithmetic Logic Unit. The part of
CPU that adds, subtracts, shifts,
ANDs, ORs, and performs other
computational and logical operations.

The organizational structure of a
computer system.

A list of values stored in a series
of memory locations.

American Standard Code for
Information Interchange. Consist of
128 letters, numbers, punctuation
marks, and special symbols each of
which consists of a binary pattern
that uses eight digits.

A software program which converts
symbolic or mnemonic language into
machine language.

Beginners All Purpose Symbolic
Instruction Code. A high level
programming language designed for the
beginning programmer.

A unit by which signal speeds are
measured. In micro processing, the
baud rate refers to the number of
bits per second.

Pertaining to a condition that has
two possible values or states. Also,
refers to the base 2 numbering
system.

bit

blanlk

blinking

boolean value

bootstrap

bps

branch

bubble sort

buffer

A binary digit. Single element of a
binary number with a value of either
O or 1.

A part of a data medium in which no
characters are recorded. Also, the
space character.

An international regular change in
the intensity of a character on the
screen.

A numeric value that is interpreted
as "true" (if it is not zero) or
"false" (if it is zero).

A technique or device for loading the
first instructions or words of a
routine into memory. These
instructions are used then to bring
in the rest of the routine.

Bit per second.

A way of rerouting a program so that
it branches to another set of
instructions to perform another
task.

A technique for sorting a list of
items into sequence. Pairs of items
are examined, and exchanged if they
are out of sequence. This process is
repeated until the list is sorted.

An area of storage which is used to
compensate for a difference in rate
of flow of data, or time of
occurrence of events, when
transferring data from one device to
another. Usually refer to an area
reserved for I/0 operations, into
which data is read or from which data
is written.

341

bug

bus

byte

clock

COBOL

command

compilerx

concatenation

congtant

control
character

342

An error in a program.

A set of wires or conductors arranged
in parallel, used to transmit data,
signals, or power between parts of a
computer system.

The representation of a character in
binary. Consist of eight bits.

A device or circuit that sends out
timing pulses to synchronize the
action of the processor.

Common Business Oriented Language. A
high level language used in many
business applications.

An instruction to the computer that
causes something to happen.

A program to convert a high level
language into assembly or machine
language (understood by the
computer).

The operation that joins two strings
together in the order specified,
forming a single string with a
length equal to the sum of the
lengths of the two strings.

A fixed value or data item.

A character whose occurrence in a
particular context initiates,
modifies, or stops a control
operation. A control operation is an
action that affects the recording,
processing, transmission, or
interpretation of data; for example,
pressing ENTER, font change, or end
of transmission.

controller

coordinates

CPU

CUTsE0oY

data

data bus

debug

default

delimiter

diagnostic

divectory

An interface which allows the control
of an I/0 device by the CPU.

Numbers which identify a location on
the display.

Central Processing Unit. The part of
the computer that controls all
execution of instructions and
arithmetic operations.

Cathode Ray Tube. The display on
which information is shown after
program execution.

A movable marker that is used to
indicate a position on the display.

Essentially, information that 1is
input to the computer.

An electrical path along which
information passes.

To find and eliminate mistakes in a
program.

A value or option that is assumed
when none is specified.

A character that groups or separates
words or values in a line of input.

Pertaining to the detection and
isolation of a malfunction or
mistake.

A table of identifiers and references
to the corresponding items of data.
For example, the directory for a
diskette contains the names of files
on the diskette (identifiers), along
with information that tells DOS where
to find the file on the diskette.

343

disabled A state that prevents the occurrence
of certain types of interruptions.

disk A plate resembling a record album
with a magnetic surface used to store
data or programs. Also known as
"floppy disk'".

bnos Disk Operating System. In this book,
refers only to the SVI Personal
Computer Disk Operating System.

durany Having the appearance of a specified
thing but not having the capacity to
function as such. For example, a
dummy argument to a function.

dump The transfer of information from one
piece of equipment to another.

duplex In data communications, pertaining to
a simultaneous two-way independent
transmission in both directions.
Same as full duplex.

dynamic Occurring at the time of execution.

echo To reflect received data to the
sender. For example, key pressed on
the keyboard is usually echoed as
characters displayed on the screen.

edit To enter, modify, or delete data.

editor A program used for the creating
and/or altering of text in another
program.

element A member of a set; in particular, an

item in an array.

enabled A state of the processing unit that
allows certain types of
interruptions.

344

end of file
(EOF)

event

axecute

expression

extent

fault

fetch

field

file

firmware

figed-length

A "marker" immediately following the
last record of a file, signalling the
end of that file.

An occurrence or happening; in
particular to the events tested by
KEY(n), STRIG(n).

To perform an instruction or a
computer program.

A particular grouping of numbers,
letters, or variables that comprise a
single quantity.

A continuous space on a diskette,

occupied or reserved for a particular
file.

An accidental condition that causes a
device to fail to perform in a
required manner.

Read out of an instruction/data from
an addressed memory location.

In a record, a specific area used for
a particular category of data.

A set of related records treated as a
unit.

The programs that are built into the
ROM of a microcomputer.

Referring to somethiig in which the
length does not change. For example,
random files have fixed-length
records; that is, each record has the
same length as all the other records
in the file.

345

flag

floppy disk
drive

flowchart

folding

font

foreground

format

form feed

FORTRAN

function

346

Any of various types of indicators
used for identification, for example,
a character that signals the
occurrence of some condition.

A peripheral device used to store
data and input data to the computer.
It is also known as an input/output
device.

A diagram used in the development of
a computer program. A flowchart
shows the sequence of steps to be
taken.

A technique for converting data to a
desired form when it doesn't start
out in that form. For example,
lowercase letters may be folded to
uppercase.

A family or assortment of characters
of a particular size and style.

The part of the display area that is
the character itself.

The particular arrangement or layout
of data on a data medium, such as the
screen or a diskette.

A character that causes the print or
display position to move to the next

page.

FORmula TRANslation. A high level
language using algebraic notation.

A procedure which returns a value
depending on the value of one or more
independent variables in a specified
way. More generally, the specific
purpose of a thing, or its
characteristic action.

function key

carbage
collection

gate

graphic

half duplex

hard copy

hardware

hexadecimal

header record

hexadecimal

hertz (Hz)

One of the ten keys labeled F1
through F10 on the top left side of
the keyboard.

Synonym for housecleaning.

An electrical signal circuit, with
two (or more) inputs and one output,
that behaves as a switch to create a,
particular state (either a binary one
or zero).

A symbol produced by a process such
as handwriting, printing, or drawing.

In data communication, pertaining to
an alternate, one way at a time,
independent transmission.

A printed copy of machine output in a
visually readable form.

The physical components that make up
a particular computer system, include
all the peripheral devices.

A numbering system uses the digits
0-9 and the letters A-F.

A record containing common, constant,
or identifying information for a

group of records that follows.

A numbering system uses the digits
0-9 and the letters A-F.

A unit of frequency equal to one
cycle per second.

347

hierarchy

high level
language

host

housecleaning

T/0 devices

implicit
declaration

increment

initialize

instruction

348

A structure having several levels,
arranged in a tree-like form.
"Hierarchy of operations'" refers

to the relative priority assigned to
the relative priority assigned to
arithmetic or logical operations
which must be performed.

A programming language that is easier
to understand and more convenient for
the programmer. BASIC, FORTRAN,
PASCAL and PL-1 are some examples of
high level languages.

The primary or controlling computer
in a multiple computer installation.

When BASIC compresses string space by
collecting all of its useful data and
frees up unused areas of memory that

were once used for strings.

Input/Output devices such as disk
drive, data cassette, keyboard,
printer, TV monitor, etc.

The establishment of a dimension for
an array without it having been
explicity declared in a DIM
statement.

A value used to alter a counter.

To set counters, switches, addresses,
or contents of memory to zero or
other starting values at the
beginning of, or at prescribed points
in, the operation of a computer
routine.

In a programming language, any
meaningful expression that specifies
one operation and its operands, if
any.

instruction
met

integer

integrity

interface

interpret

interpreter

intervupt

invoke

joysrick

[
o
]
pot
(=N

keyboard

The set of instructions built into

the firmware of the microcomputer.

This instruction set is used by the
programmer.

One of the numbers 0, 1, 2, 3, 4, 5,
6, 7, 8, 9.

Preservation of data for its intended
purpose; data integrity exists as
long as accidental or malicious
destruction, alteration, or loss of
data are prevented.

A shared boundary through which
peripheral devices are linked to the
mainframe console of the micro-~
computer.

To translate and execute each source
language statement of a computer
program before translating and
executing the next statement.

A program that converts one
instruction at a time into machine
language understood by the computer.

To stop a process in such a way that
it can be resumed.

To activate a procedure at one of its
entry points.

A lever that can pivot in all
directions and is used as a locator
device.

To align characters horizontally or
vertically to fit the positioning
constraints of a required format.

This is the console of the computer
in which data is input to the CPU.

349

keyword One of the predefined words of a
programming language; a reserved
word.

kilobyte (K) When referring to memory capacity,
two to the tenth power or 1024 in
decimal notation.

library A collection of files or records that
can be accessed easily.

Line When referring to text on a screen or
printer, one or more characters
output before an ENTER to the first
print or display position. When
referring to input, a string of
characters accepted by the system as
a single block of input; for example,
all characters entered before you
press the ENTER key. In graphics, a
series of points drawn on the screen
form a straight line. In data
communications, any physical medium,
such as a wire or microwave beam,
that is used to transmit data.

line feed A character that causes the print or
display position to move to the
corresponding position on the next
line.

literal An explicit representation of a
value, especially a string value; a
constant.

load To enter a program into a computer's
memory.

location Any place in which data may be
stored.

logic A particular way of reasoning using

thought processes.

350

Loop

Mega (M)

machine

infinity

mantissa

mask

matyrix

matyrin
printer

MemoTy

M7

MICYOProcessor

mini~floppy

mnemonics

A set of instructions that may be
executed repeatedly while a certain
condition is true.

One million. When referrring to
memory, two to the twentieth power
(1,048,576 in decimal notation).

The largest number that can be
represented in a computer's internal
format.

For a number expressed in floating
point notation, the numeral that is
not the exponent.

A pattern of characters that is used
to control the retention or
elimination of another pattern of
characters.

An array with two or more dimensions.

A printer in which each character is
represented by a pattern of dots.

The part of the computer that stores
data and instructions. Each
instruction uses a particular address
which tells the CPU where to fetch
from.

A list of available operations.

This is also known as the CPU. It
comprises of one or more LSI circuits
that control all the processes of the
computer.

A 5-1/4 inch diskette.
These are abbreviated terms for

instructions, used so that the
programmer can easily remember them.

351

modem

motherboard

HOTH
processing

nest

nibble

notation

nonvolatile
storage

null

number--
crunching

object
DrogTam

octal

352

Modulator DEModulator. This is a
device used to convert data to
signals that can be transmitted

over telephone lines and then back to
data again at the receiving end.

This is usually the main board on
which all the components are seated.

The process of executing more than
one program almost at the same time
via multiprocessor and/or time robin.

To incorporate a structure of some
kind into another structure of the
same kind. For example, you can nest
loops within other loops, or call
subroutines from other subroutines.

Half a byte; consisting of four bits.

A set of symbols, and the rules for
their use, for the representation of
data.

This is a mode of storage which, when
the power is shut off, the stored
data is still retained.

Empty, having no meaning. In
particular, a string with no
characters in it.

This is a way of describing a
computer or a program that can handle
large amounts of arithmetical
operations.

This is a program that has been
translated into a machine language
suitable for the computer.

Pertaining to a base 8 numbering
system.

offset

on condition

on-Line

operand

operation

operating
system

output

sl

overflow

overlay

The number of units from a starting
point (in a record, control block, or
memory) to some other point. For
example, in BASIC the actual address
of a memory location is given as an
offset in bytes from the location
defined by the DEF SEG statement.

An occurrence that could cause a
program interruption. It may be the
detection of an unexpected error, or
of an occurrence that is expected,
but at an unpredictable time.

Whenever a peripheral device is
interacting with its host computer,
it is said to be "on-line'". A
printer is said to be "on-line'" when
it is doing a computer printout.

That which is operated upon.

A well defined action that, when
applied to any permissible
combination of known entities,
produces a new entity.

Software that controls the execution
of programs; often used to refer to
DOS.

When data is said to be '"output" it
usually refers to the printout from a
printer. Output may also be programs
or data saved on a floppy diskette.

When the result of an operation
exceeds the capacity of the intended
unit of storage.

To use the same areas of memory for

different parts of a computer program
at different times.

353

pad

page

parameler

parity check

peripheral

pixel

pointer

port

position

354

To record into an area of storage so
as to destroy the data that was
previously stored there.

To fill a block with dummy data,
usually zeros or blanks.

Part of the screen buffer that can be
displayed and/or written on
independently.

A name in a procedure that is used to
refer to an argument passed to that
procedure.

A technique for testing transmitted
data. Typically, a binary digit is
appended to a group of binary digits
to make the sum of all the digits
either always even (even parity) or
always odd (odd parity).

Any device external from the host
computer but used in conjuction with
the computer to perform operations
such as printouts, data storage and
retrieval, CRT displays,
telecommunications, graphics, etc.

A graphic '"point'". Also, the bits
which contain the information for
that point.

This is the register in the CPU that
contains the memory address.

An access point for data entry or
exit.

In a string, each location that may
be occupied by a character and that
may be identified by a number.

precision

program

program
counter

prompt

protect

queue

random access

memory (RAM)

Tange

G2

raster scan

read-~only

A measure of the ability to
distinguish between nearly equal
values.

The sequence of instructions that
tell the computer what task to
perform.

This is the register in the CPU that
specifies the address of the next
instruction to be executed.

A question the computer asks when it
needs you to supply information.

To restrict access to or use of all,
or part of, a data processing system.

A line or list of items waiting for
service; the first item that went in
the queue is the first item to be
serviced.

Storage in which you can read and
write to any desired location.
Sometimes called direct access
storage.

The set of values that a quantity or
function may take.

A technique of generating a display
image by a line-by-line sweep across
the entire display image by a line-
by-line sweep across the entire
display screen. This is the way
pictures are created on a

television screen. This is the way
pictures are created on a television
screen.

A type of access to data that allows
it to be read but not modified.

355

read only
memory (RAM)

record

recursive

register

relative
coordinates

regserved
word

resoclution

routine

TOwW

356

This is the part of memory that may
only be read from. It is said to be
"nonvolatile'" meaning that when power
is removed the ROM retains its
information.

A collection of related information,
treated as a unit.

Pertaining to a process in which each
step makes use of the results of
earlier steps, such as when a
function calls itself.

A circuit used to store or manipulate
bits or bytes of data in the CPU.

In graphics, values that identify the
location of a point by specifying
displacements from some other point.

A word that is defined in BASIC for a
special purpose, and that you cannot
use as a variable name.

In computer graphics, a measure of
the sharpness of an image, expressed
as the number of lines per unit of
length discernible in that area.

Part of a program, or a sequence of
instructions called by a program,
that may have some general or
frequent use.

A horizontal arrangement of
characters or other expressions.

To change the representation of a
quantity, expressing it in other
units, so that its range is brought
within a specified range.

seroll

segment

sequential
access

software

sOUTCe
program

sprite

stack

statement

stop bit

storage

To examine sequentially, part by
part. See raster scan.

To move all or part of the display
image vertically or horizontally so
that new data appears at one edge as
old data disappears at the opposite
edge.

A particular 64K-byte area of memory.

An access mode in which records are
retrieved in the same order in which
they were written. Each successive
access to the file refers to the next
record in the file.

Software pertains to the programs
that are input to the computer by the
user.

A program written in a language that
is easily understood.

This is a shape designed by the
programmer when using a computer's
graphic capabilities.

A method of temporarily storing data
so that the last item stored is the
first item to be processed.

A meaningful expression that may
describe or specify operations and is
complete in the context of the BASIC
programming language.

A signal following a character or
block that prepares the receiving
device to receive the next character
or block.

A device, or part of a device, that
can retain data. Memory.

357

string

subrouktine

subscript

syntaxy

table

Fargetl

Tele-
communicatons

terminal

time sharing

toggle

trailing

crap

truncate

358

A sequence of characters.

A routine in a program that may be
used over again to perform a specific
function.

A number that identifies the position
of an element in an array.

The rules governing the structure of
a language.

An arrangement of data in rows and
columns.

In an assignment statement, the
variable whose value is being set.

Synonym for data communication.

A device, usually equipped with a
keyboard and display, capable of
sending and receiving information.

The process of sharing the use of a
CPU via time robin for more than one
user.

Pertaining to anything having two
stable states; to switch back and
forth between the two states.

Located at the end of a string or
number. For example, the number 1000
has three trailing zeros.

A set of conditions that describes an
event to be intercepted and the
action to be taken after the
interception.

To remove the ending elements from a
string.

truth table

two's
comp lement

typematic
key

update

utilicy
progran

variable

variable-—
length
record

vector

wrapavround

write

A truth table shows the different
values that an AND, OR, NAND, NOR or
other logic gates will have,
according to two select inputs.

A form for representing negative
numbers in the binary number system.

A key that repeats as long as you
hold it down.

To modify, usually a master file,
with current information.

This is a program that helps the user
perform various utility functions,
such as a debugging program to find
mistakes in programs.

A quantity that can assume any of a
given set of values.

A record having a lenth independent
of the length of other records in the
file.

In graphics, a directed line segment.
More generally, an ordered set of
numbers, and so, a one-dimensional
way.

The technique for displaying items
whose coordinates lie outside the

display area.

To record data in a storage device or
on a data medium.

359

360

INDEX

A

ABS 129
APPEND 299
ASC 130
ATN 131
ATTR$ 294
AUTO 59
B

BEEP 173
BIN$ 132
BLOAD 174
BSAVE 175
CDBL 133
CHR$ 134
CINT 135
CIRCLE 176
CLEAR 61
CLICK 62
CLOAD 178
CLOAD? 179
CLOSE 180
CLS 181
COLOR 182
CONT 63
CoS 136
CSAVE 184
CSNG 137
CSRLIN 138
CVD 262, 294
CVI 262, 294
CcVvs 262, 294

361

362

D

DATA
DEF FN
DEFDBL
DEFINT
DEFSNG
DEFSTR
DEFUSR
DELETE
DIM
DRAW
DSKI$
DSKO$

B

ELSE
END
EOF
ERASE
ERL
ERR
ERROR
EXP

FILES

FIX
FOR....NEXT
FPOS

FRE

G

GET

GET (graphics)
GOSUB....RETURN
GOTO

H

HEX$

263,

190,

65
67
70
70
70
70
69
72
74
185
294
295

87
77
295
78
139
139
79
141

295
142

81
296
143

296
191
84
86

144

I

IF...GOTO.. .ELSE
IF...THEN...ELSE
INKEY $

INP

INPUT

INPUT#

INPUT$

IPL

INSTR

INT

INTERVAL ON/OFF/STOP

K

KEY

KEY LIST

KEY ON/OFF/STOP
KILL

};j

LET

LEFT$

LEN

LFILES

LINE

LINE INPUT
LINE INPUT#
LIST

LLIST

LOAD

LOC

LOCATE

LOG

LPRINT
LPRINT USING
LPOS

LSET

90,
193,
145,

205,
264,

208,

87

87
145
278
299
296
195
296
147
148
196

197
199
200
296

92
149
150
242
201

93
203

94

96
296
297
207
151

97

97
152
297

363

364

M

MAXFILES
MERGE

MID$

MKD$

MKI$

MKS$

MOTOR ON/OFF

&

NAME

NEW

G

OCT$

ON ERROR GOTO
ON....GOTO
ON....GOSUB

ON INTERVAL GOSUB
ON KEY GOSUB

ON SPRITE GOSUB
ON STOP GOSUB

ON STRIG GOSUB
OPEN

OuT

OUTPUT

™
X

PAD

PAINT

PEEK

PLAY

POINT

POKE

POS

PRESET
PRINT
PRINT#
PRINT USING
PRINT# USING

210,
211,

98,
265,
265,
265,

233,

297
297
153
298
298
298
212

298
99

154
100
102
102
213
215
217
219
221
298
279
299

266
225
155
226
268
104
156
234
105
300
107
233

PRESET

PSET

PUT

PUT (graphics)
PUT SPRITE

R

READ
RIGHT
RND
RSET
RUN

REM
RENUM
RESTORE
RESUME

3

SAVE
SCREEN
SET

SGN

SIN
SOUND
SPACE$
SPC
SPRITE$

SPRITE ON/OFF/STOP

SQR
STICK
STOP

STOP ON/OFF/STOP

STR$
STRIG

STRIG ON/OFF/STOP

STRING$
SWAP

SWITCH
SWITCH STOP

236,

208,
121,

243,

234
234
300
237
239

113
157
158
297
300
115
116
118
119

301
245
301
160
161
247
162
163
274
257
164
269
123
258
165
271
259
166
125
126
126

365

366

TAB
TAN
THEN
TIME
TROFF
TRON

U

USR

v

VAL
VARPTR
VPEEK
VPOKE

W

WAIT
WIDTH

167
168

87
277
128
128

169

170
171
272
260

280
261

. ,
- .

.

% ;B

- W - ;i%;«.&*wg«g’sa{q - - .
- - - . .
- - - - - . -
%W%W - . .
WMM%X&M - .. - -
. . ‘ -
. - - . - -
- . - . - - . - -
. ___ _ __ @ @ @@ - . . .
... . - - . _ . = . .
= i

e N NS N A N SN A R N e NS e e <R S

_ yw - . . .

- - . e o - o o

. e - c o o - - - - - .
- - - . - - . -
.- _ _ _ - . .
- . - e -
o - - - .

.. - .- . .
- . . = oo - L .
V . e e o o = e > - = S

- - - . = : . - -

- - - - ... -

- - - - - - .. .

- - . . . 0 .

. , - - .. @ . - .
: - - -

el % e & - % o 7

- - - . o e e -

Wﬁ . ”imﬂf *MW - - -
-

- -

- - . .

_ - - . - -
- - - - oy o o
- — é@zﬁh% i e s - e -
e - .- . - 1@?"“""‘;""‘;.%’@‘;%: . -
.- _ ___ _ __ - - - = . -
e _ - - - - .
. . = . - -

. - - - - -
oo - o . -
%WFWM“ . - -
- - - - - .
- - - - . - -
- -~ - f .
... _ _ _ _ @ @ - -
o G o e o e .
.. . . - .. . -
- - = .

- -
-

. - .
- , - - ... - . -

e < . e L s e
- - .- - -
s o . . < c o i g e e e

- - - .
. ‘ - - -
- - - -
o . . - - .
L - - o .
.. - = - -
- - - o -
.. - _ - . -

_ .

-

.
.
j)"y’?’?x’ﬁw«‘m{

o
o

-

-

.
.

Gt e
.-

S - .
- - ..

- = o - -
W@WM‘ %ﬂ% - - - - -
- - - .

o

.

- - . .

. e
. . - - . -
. - . . -
- - - , ~ - ... __ __ _ _ _ _
%&%w - - - - -~ -

- -

/x .

. - | -
M ,“ m

o o S .

S ia 2 o - i e e % TN
- - . - . . - -

- >
- . - . -
s oo 7 o = - o e -
. - - ... - .
= . = - >
- . . - . - .

- o M% o e e - o
-~ - - . . .

- .- ;;: - -

/ﬁ -

.

o .
- .

.
@K
.

.
.

-

@

o

M
i

= e

-
- .- - @ -
.
,, . -

. - >

- - -

- - = o - . . o
- . = .

. M W%WW‘“@‘ - .

- . .

T

- :

.

-

-
- .

- -

-

. . ,«.“’é’ii.%« -

- . - - -

= . - -
- - . . o -
. W.W«wﬂ %” - ,,'*p(ﬁ.;a:-.ﬁy‘. .
. - . . .

-
- . . - -
- Ws .. -

R R

o

\\

- - - .
-

o

. - G o = 2

o - -
. e 5;’,75“’

- -
- @ '
. = _ - _
... . . .
~

. i
ooy o - - = o > . 3
2 .

. .
- - c - o .
. -

e o s >
- . . . -
. ... @ ,
. - . - -
. - . o ﬂ%@*%&;ﬂwx - 5
- - - - - 1y
. v&%*ﬁﬁé/ - |
o 0 g
]

ST e e S
o - - - -
- - . .
o I R e s S
. s

- -

Lo -

- .
s s
- ﬁ«f@%ﬁ,w .
-

- .

- . -
.
.

L
- .
- . . - -

-
-

L e
. . =
’ - - -
.

e .
Sesaa e e e s
. - jf - {C»;/L‘),?f,:“sw%“ﬂm~ -
. . . -
. - .
- . .

= - - % -
. .
-
-
-
. . .‘ .-

- =
- .

. o -
-

. .
- . -]
- . . -
- ..

.

-

-
-

	SVI328-Basic-Reference-Manual-OCR_Page_001
	SVI328-Basic-Reference-Manual-OCR_Page_002
	SVI328-Basic-Reference-Manual-OCR_Page_003
	SVI328-Basic-Reference-Manual-OCR_Page_004
	SVI328-Basic-Reference-Manual-OCR_Page_005
	SVI328-Basic-Reference-Manual-OCR_Page_006
	SVI328-Basic-Reference-Manual-OCR_Page_007
	SVI328-Basic-Reference-Manual-OCR_Page_008
	SVI328-Basic-Reference-Manual-OCR_Page_009
	SVI328-Basic-Reference-Manual-OCR_Page_010
	SVI328-Basic-Reference-Manual-OCR_Page_011
	SVI328-Basic-Reference-Manual-OCR_Page_012
	SVI328-Basic-Reference-Manual-OCR_Page_013
	SVI328-Basic-Reference-Manual-OCR_Page_014
	SVI328-Basic-Reference-Manual-OCR_Page_015
	SVI328-Basic-Reference-Manual-OCR_Page_016
	SVI328-Basic-Reference-Manual-OCR_Page_017
	SVI328-Basic-Reference-Manual-OCR_Page_018
	SVI328-Basic-Reference-Manual-OCR_Page_019
	SVI328-Basic-Reference-Manual-OCR_Page_020
	SVI328-Basic-Reference-Manual-OCR_Page_021
	SVI328-Basic-Reference-Manual-OCR_Page_022
	SVI328-Basic-Reference-Manual-OCR_Page_023
	SVI328-Basic-Reference-Manual-OCR_Page_024
	SVI328-Basic-Reference-Manual-OCR_Page_025
	SVI328-Basic-Reference-Manual-OCR_Page_026
	SVI328-Basic-Reference-Manual-OCR_Page_027
	SVI328-Basic-Reference-Manual-OCR_Page_028
	SVI328-Basic-Reference-Manual-OCR_Page_029
	SVI328-Basic-Reference-Manual-OCR_Page_030
	SVI328-Basic-Reference-Manual-OCR_Page_031
	SVI328-Basic-Reference-Manual-OCR_Page_032
	SVI328-Basic-Reference-Manual-OCR_Page_033
	SVI328-Basic-Reference-Manual-OCR_Page_034
	SVI328-Basic-Reference-Manual-OCR_Page_035
	SVI328-Basic-Reference-Manual-OCR_Page_036
	SVI328-Basic-Reference-Manual-OCR_Page_037
	SVI328-Basic-Reference-Manual-OCR_Page_038
	SVI328-Basic-Reference-Manual-OCR_Page_039
	SVI328-Basic-Reference-Manual-OCR_Page_040
	SVI328-Basic-Reference-Manual-OCR_Page_041
	SVI328-Basic-Reference-Manual-OCR_Page_042
	SVI328-Basic-Reference-Manual-OCR_Page_043
	SVI328-Basic-Reference-Manual-OCR_Page_044
	SVI328-Basic-Reference-Manual-OCR_Page_045
	SVI328-Basic-Reference-Manual-OCR_Page_046
	SVI328-Basic-Reference-Manual-OCR_Page_047
	SVI328-Basic-Reference-Manual-OCR_Page_048
	SVI328-Basic-Reference-Manual-OCR_Page_049
	SVI328-Basic-Reference-Manual-OCR_Page_050
	SVI328-Basic-Reference-Manual-OCR_Page_051
	SVI328-Basic-Reference-Manual-OCR_Page_052
	SVI328-Basic-Reference-Manual-OCR_Page_053
	SVI328-Basic-Reference-Manual-OCR_Page_054
	SVI328-Basic-Reference-Manual-OCR_Page_055
	SVI328-Basic-Reference-Manual-OCR_Page_056
	SVI328-Basic-Reference-Manual-OCR_Page_057
	SVI328-Basic-Reference-Manual-OCR_Page_058
	SVI328-Basic-Reference-Manual-OCR_Page_059
	SVI328-Basic-Reference-Manual-OCR_Page_060
	SVI328-Basic-Reference-Manual-OCR_Page_061
	SVI328-Basic-Reference-Manual-OCR_Page_062
	SVI328-Basic-Reference-Manual-OCR_Page_063
	SVI328-Basic-Reference-Manual-OCR_Page_064
	SVI328-Basic-Reference-Manual-OCR_Page_065
	SVI328-Basic-Reference-Manual-OCR_Page_066
	SVI328-Basic-Reference-Manual-OCR_Page_067
	SVI328-Basic-Reference-Manual-OCR_Page_068
	SVI328-Basic-Reference-Manual-OCR_Page_069
	SVI328-Basic-Reference-Manual-OCR_Page_070
	SVI328-Basic-Reference-Manual-OCR_Page_071
	SVI328-Basic-Reference-Manual-OCR_Page_072
	SVI328-Basic-Reference-Manual-OCR_Page_073
	SVI328-Basic-Reference-Manual-OCR_Page_074
	SVI328-Basic-Reference-Manual-OCR_Page_075
	SVI328-Basic-Reference-Manual-OCR_Page_076
	SVI328-Basic-Reference-Manual-OCR_Page_077
	SVI328-Basic-Reference-Manual-OCR_Page_078
	SVI328-Basic-Reference-Manual-OCR_Page_079
	SVI328-Basic-Reference-Manual-OCR_Page_080
	SVI328-Basic-Reference-Manual-OCR_Page_081
	SVI328-Basic-Reference-Manual-OCR_Page_082
	SVI328-Basic-Reference-Manual-OCR_Page_083
	SVI328-Basic-Reference-Manual-OCR_Page_084
	SVI328-Basic-Reference-Manual-OCR_Page_085
	SVI328-Basic-Reference-Manual-OCR_Page_086
	SVI328-Basic-Reference-Manual-OCR_Page_087
	SVI328-Basic-Reference-Manual-OCR_Page_088
	SVI328-Basic-Reference-Manual-OCR_Page_089
	SVI328-Basic-Reference-Manual-OCR_Page_090
	SVI328-Basic-Reference-Manual-OCR_Page_091
	SVI328-Basic-Reference-Manual-OCR_Page_092
	SVI328-Basic-Reference-Manual-OCR_Page_093
	SVI328-Basic-Reference-Manual-OCR_Page_094
	SVI328-Basic-Reference-Manual-OCR_Page_095
	SVI328-Basic-Reference-Manual-OCR_Page_096
	SVI328-Basic-Reference-Manual-OCR_Page_097
	SVI328-Basic-Reference-Manual-OCR_Page_098
	SVI328-Basic-Reference-Manual-OCR_Page_099
	SVI328-Basic-Reference-Manual-OCR_Page_100
	SVI328-Basic-Reference-Manual-OCR_Page_101
	SVI328-Basic-Reference-Manual-OCR_Page_102
	SVI328-Basic-Reference-Manual-OCR_Page_103
	SVI328-Basic-Reference-Manual-OCR_Page_104
	SVI328-Basic-Reference-Manual-OCR_Page_105
	SVI328-Basic-Reference-Manual-OCR_Page_106
	SVI328-Basic-Reference-Manual-OCR_Page_107
	SVI328-Basic-Reference-Manual-OCR_Page_108
	SVI328-Basic-Reference-Manual-OCR_Page_109
	SVI328-Basic-Reference-Manual-OCR_Page_110
	SVI328-Basic-Reference-Manual-OCR_Page_111
	SVI328-Basic-Reference-Manual-OCR_Page_112
	SVI328-Basic-Reference-Manual-OCR_Page_113
	SVI328-Basic-Reference-Manual-OCR_Page_114
	SVI328-Basic-Reference-Manual-OCR_Page_115
	SVI328-Basic-Reference-Manual-OCR_Page_116
	SVI328-Basic-Reference-Manual-OCR_Page_117
	SVI328-Basic-Reference-Manual-OCR_Page_118
	SVI328-Basic-Reference-Manual-OCR_Page_119
	SVI328-Basic-Reference-Manual-OCR_Page_120
	SVI328-Basic-Reference-Manual-OCR_Page_121
	SVI328-Basic-Reference-Manual-OCR_Page_122
	SVI328-Basic-Reference-Manual-OCR_Page_123
	SVI328-Basic-Reference-Manual-OCR_Page_124
	SVI328-Basic-Reference-Manual-OCR_Page_125
	SVI328-Basic-Reference-Manual-OCR_Page_126
	SVI328-Basic-Reference-Manual-OCR_Page_127
	SVI328-Basic-Reference-Manual-OCR_Page_128
	SVI328-Basic-Reference-Manual-OCR_Page_129
	SVI328-Basic-Reference-Manual-OCR_Page_130
	SVI328-Basic-Reference-Manual-OCR_Page_131
	SVI328-Basic-Reference-Manual-OCR_Page_132
	SVI328-Basic-Reference-Manual-OCR_Page_133
	SVI328-Basic-Reference-Manual-OCR_Page_134
	SVI328-Basic-Reference-Manual-OCR_Page_135
	SVI328-Basic-Reference-Manual-OCR_Page_136
	SVI328-Basic-Reference-Manual-OCR_Page_137
	SVI328-Basic-Reference-Manual-OCR_Page_138
	SVI328-Basic-Reference-Manual-OCR_Page_139
	SVI328-Basic-Reference-Manual-OCR_Page_140
	SVI328-Basic-Reference-Manual-OCR_Page_141
	SVI328-Basic-Reference-Manual-OCR_Page_142
	SVI328-Basic-Reference-Manual-OCR_Page_143
	SVI328-Basic-Reference-Manual-OCR_Page_144
	SVI328-Basic-Reference-Manual-OCR_Page_145
	SVI328-Basic-Reference-Manual-OCR_Page_146
	SVI328-Basic-Reference-Manual-OCR_Page_147
	SVI328-Basic-Reference-Manual-OCR_Page_148
	SVI328-Basic-Reference-Manual-OCR_Page_149
	SVI328-Basic-Reference-Manual-OCR_Page_150
	SVI328-Basic-Reference-Manual-OCR_Page_151
	SVI328-Basic-Reference-Manual-OCR_Page_152
	SVI328-Basic-Reference-Manual-OCR_Page_153
	SVI328-Basic-Reference-Manual-OCR_Page_154
	SVI328-Basic-Reference-Manual-OCR_Page_155
	SVI328-Basic-Reference-Manual-OCR_Page_156
	SVI328-Basic-Reference-Manual-OCR_Page_157
	SVI328-Basic-Reference-Manual-OCR_Page_158
	SVI328-Basic-Reference-Manual-OCR_Page_159
	SVI328-Basic-Reference-Manual-OCR_Page_160
	SVI328-Basic-Reference-Manual-OCR_Page_161
	SVI328-Basic-Reference-Manual-OCR_Page_162
	SVI328-Basic-Reference-Manual-OCR_Page_163
	SVI328-Basic-Reference-Manual-OCR_Page_164
	SVI328-Basic-Reference-Manual-OCR_Page_165
	SVI328-Basic-Reference-Manual-OCR_Page_166
	SVI328-Basic-Reference-Manual-OCR_Page_167
	SVI328-Basic-Reference-Manual-OCR_Page_168
	SVI328-Basic-Reference-Manual-OCR_Page_169
	SVI328-Basic-Reference-Manual-OCR_Page_170
	SVI328-Basic-Reference-Manual-OCR_Page_171
	SVI328-Basic-Reference-Manual-OCR_Page_172
	SVI328-Basic-Reference-Manual-OCR_Page_173
	SVI328-Basic-Reference-Manual-OCR_Page_174
	SVI328-Basic-Reference-Manual-OCR_Page_175
	SVI328-Basic-Reference-Manual-OCR_Page_176
	SVI328-Basic-Reference-Manual-OCR_Page_177
	SVI328-Basic-Reference-Manual-OCR_Page_178
	SVI328-Basic-Reference-Manual-OCR_Page_179
	SVI328-Basic-Reference-Manual-OCR_Page_180
	SVI328-Basic-Reference-Manual-OCR_Page_181
	SVI328-Basic-Reference-Manual-OCR_Page_182
	SVI328-Basic-Reference-Manual-OCR_Page_183
	SVI328-Basic-Reference-Manual-OCR_Page_184
	SVI328-Basic-Reference-Manual-OCR_Page_185
	SVI328-Basic-Reference-Manual-OCR_Page_186
	SVI328-Basic-Reference-Manual-OCR_Page_187
	SVI328-Basic-Reference-Manual-OCR_Page_188
	SVI328-Basic-Reference-Manual-OCR_Page_189
	SVI328-Basic-Reference-Manual-OCR_Page_190
	SVI328-Basic-Reference-Manual-OCR_Page_191
	SVI328-Basic-Reference-Manual-OCR_Page_192
	SVI328-Basic-Reference-Manual-OCR_Page_193
	SVI328-Basic-Reference-Manual-OCR_Page_194
	SVI328-Basic-Reference-Manual-OCR_Page_195
	SVI328-Basic-Reference-Manual-OCR_Page_196
	SVI328-Basic-Reference-Manual-OCR_Page_197
	SVI328-Basic-Reference-Manual-OCR_Page_198
	SVI328-Basic-Reference-Manual-OCR_Page_199
	SVI328-Basic-Reference-Manual-OCR_Page_200
	SVI328-Basic-Reference-Manual-OCR_Page_201
	SVI328-Basic-Reference-Manual-OCR_Page_202
	SVI328-Basic-Reference-Manual-OCR_Page_203
	SVI328-Basic-Reference-Manual-OCR_Page_204
	SVI328-Basic-Reference-Manual-OCR_Page_205
	SVI328-Basic-Reference-Manual-OCR_Page_206
	SVI328-Basic-Reference-Manual-OCR_Page_207
	SVI328-Basic-Reference-Manual-OCR_Page_208
	SVI328-Basic-Reference-Manual-OCR_Page_209
	SVI328-Basic-Reference-Manual-OCR_Page_210
	SVI328-Basic-Reference-Manual-OCR_Page_211
	SVI328-Basic-Reference-Manual-OCR_Page_212
	SVI328-Basic-Reference-Manual-OCR_Page_213
	SVI328-Basic-Reference-Manual-OCR_Page_214
	SVI328-Basic-Reference-Manual-OCR_Page_215
	SVI328-Basic-Reference-Manual-OCR_Page_216
	SVI328-Basic-Reference-Manual-OCR_Page_217
	SVI328-Basic-Reference-Manual-OCR_Page_218
	SVI328-Basic-Reference-Manual-OCR_Page_219
	SVI328-Basic-Reference-Manual-OCR_Page_220
	SVI328-Basic-Reference-Manual-OCR_Page_221
	SVI328-Basic-Reference-Manual-OCR_Page_222
	SVI328-Basic-Reference-Manual-OCR_Page_223
	SVI328-Basic-Reference-Manual-OCR_Page_224
	SVI328-Basic-Reference-Manual-OCR_Page_225
	SVI328-Basic-Reference-Manual-OCR_Page_226
	SVI328-Basic-Reference-Manual-OCR_Page_227
	SVI328-Basic-Reference-Manual-OCR_Page_228
	SVI328-Basic-Reference-Manual-OCR_Page_229
	SVI328-Basic-Reference-Manual-OCR_Page_230
	SVI328-Basic-Reference-Manual-OCR_Page_231
	SVI328-Basic-Reference-Manual-OCR_Page_232
	SVI328-Basic-Reference-Manual-OCR_Page_233
	SVI328-Basic-Reference-Manual-OCR_Page_234
	SVI328-Basic-Reference-Manual-OCR_Page_235
	SVI328-Basic-Reference-Manual-OCR_Page_236
	SVI328-Basic-Reference-Manual-OCR_Page_237
	SVI328-Basic-Reference-Manual-OCR_Page_238
	SVI328-Basic-Reference-Manual-OCR_Page_239
	SVI328-Basic-Reference-Manual-OCR_Page_240
	SVI328-Basic-Reference-Manual-OCR_Page_241
	SVI328-Basic-Reference-Manual-OCR_Page_242
	SVI328-Basic-Reference-Manual-OCR_Page_243
	SVI328-Basic-Reference-Manual-OCR_Page_244
	SVI328-Basic-Reference-Manual-OCR_Page_245
	SVI328-Basic-Reference-Manual-OCR_Page_246
	SVI328-Basic-Reference-Manual-OCR_Page_247
	SVI328-Basic-Reference-Manual-OCR_Page_248
	SVI328-Basic-Reference-Manual-OCR_Page_249
	SVI328-Basic-Reference-Manual-OCR_Page_250
	SVI328-Basic-Reference-Manual-OCR_Page_251
	SVI328-Basic-Reference-Manual-OCR_Page_252
	SVI328-Basic-Reference-Manual-OCR_Page_253
	SVI328-Basic-Reference-Manual-OCR_Page_254
	SVI328-Basic-Reference-Manual-OCR_Page_255
	SVI328-Basic-Reference-Manual-OCR_Page_256
	SVI328-Basic-Reference-Manual-OCR_Page_257
	SVI328-Basic-Reference-Manual-OCR_Page_258
	SVI328-Basic-Reference-Manual-OCR_Page_259
	SVI328-Basic-Reference-Manual-OCR_Page_260
	SVI328-Basic-Reference-Manual-OCR_Page_261
	SVI328-Basic-Reference-Manual-OCR_Page_262
	SVI328-Basic-Reference-Manual-OCR_Page_263
	SVI328-Basic-Reference-Manual-OCR_Page_264
	SVI328-Basic-Reference-Manual-OCR_Page_265
	SVI328-Basic-Reference-Manual-OCR_Page_266
	SVI328-Basic-Reference-Manual-OCR_Page_267
	SVI328-Basic-Reference-Manual-OCR_Page_268
	SVI328-Basic-Reference-Manual-OCR_Page_269
	SVI328-Basic-Reference-Manual-OCR_Page_270
	SVI328-Basic-Reference-Manual-OCR_Page_271
	SVI328-Basic-Reference-Manual-OCR_Page_272
	SVI328-Basic-Reference-Manual-OCR_Page_273
	SVI328-Basic-Reference-Manual-OCR_Page_274
	SVI328-Basic-Reference-Manual-OCR_Page_275
	SVI328-Basic-Reference-Manual-OCR_Page_276
	SVI328-Basic-Reference-Manual-OCR_Page_277
	SVI328-Basic-Reference-Manual-OCR_Page_278
	SVI328-Basic-Reference-Manual-OCR_Page_279
	SVI328-Basic-Reference-Manual-OCR_Page_280
	SVI328-Basic-Reference-Manual-OCR_Page_281
	SVI328-Basic-Reference-Manual-OCR_Page_282
	SVI328-Basic-Reference-Manual-OCR_Page_283
	SVI328-Basic-Reference-Manual-OCR_Page_284
	SVI328-Basic-Reference-Manual-OCR_Page_285
	SVI328-Basic-Reference-Manual-OCR_Page_286
	SVI328-Basic-Reference-Manual-OCR_Page_287
	SVI328-Basic-Reference-Manual-OCR_Page_288
	SVI328-Basic-Reference-Manual-OCR_Page_289
	SVI328-Basic-Reference-Manual-OCR_Page_290
	SVI328-Basic-Reference-Manual-OCR_Page_291
	SVI328-Basic-Reference-Manual-OCR_Page_292
	SVI328-Basic-Reference-Manual-OCR_Page_293
	SVI328-Basic-Reference-Manual-OCR_Page_294
	SVI328-Basic-Reference-Manual-OCR_Page_295
	SVI328-Basic-Reference-Manual-OCR_Page_296
	SVI328-Basic-Reference-Manual-OCR_Page_297
	SVI328-Basic-Reference-Manual-OCR_Page_298
	SVI328-Basic-Reference-Manual-OCR_Page_299
	SVI328-Basic-Reference-Manual-OCR_Page_300
	SVI328-Basic-Reference-Manual-OCR_Page_301
	SVI328-Basic-Reference-Manual-OCR_Page_302
	SVI328-Basic-Reference-Manual-OCR_Page_303
	SVI328-Basic-Reference-Manual-OCR_Page_304
	SVI328-Basic-Reference-Manual-OCR_Page_305
	SVI328-Basic-Reference-Manual-OCR_Page_306
	SVI328-Basic-Reference-Manual-OCR_Page_307
	SVI328-Basic-Reference-Manual-OCR_Page_308
	SVI328-Basic-Reference-Manual-OCR_Page_309
	SVI328-Basic-Reference-Manual-OCR_Page_310
	SVI328-Basic-Reference-Manual-OCR_Page_311
	SVI328-Basic-Reference-Manual-OCR_Page_312
	SVI328-Basic-Reference-Manual-OCR_Page_313
	SVI328-Basic-Reference-Manual-OCR_Page_314
	SVI328-Basic-Reference-Manual-OCR_Page_315
	SVI328-Basic-Reference-Manual-OCR_Page_316
	SVI328-Basic-Reference-Manual-OCR_Page_317
	SVI328-Basic-Reference-Manual-OCR_Page_318
	SVI328-Basic-Reference-Manual-OCR_Page_319
	SVI328-Basic-Reference-Manual-OCR_Page_320
	SVI328-Basic-Reference-Manual-OCR_Page_321
	SVI328-Basic-Reference-Manual-OCR_Page_322
	SVI328-Basic-Reference-Manual-OCR_Page_323
	SVI328-Basic-Reference-Manual-OCR_Page_324
	SVI328-Basic-Reference-Manual-OCR_Page_325
	SVI328-Basic-Reference-Manual-OCR_Page_326
	SVI328-Basic-Reference-Manual-OCR_Page_327
	SVI328-Basic-Reference-Manual-OCR_Page_328
	SVI328-Basic-Reference-Manual-OCR_Page_329
	SVI328-Basic-Reference-Manual-OCR_Page_330
	SVI328-Basic-Reference-Manual-OCR_Page_331
	SVI328-Basic-Reference-Manual-OCR_Page_332
	SVI328-Basic-Reference-Manual-OCR_Page_333
	SVI328-Basic-Reference-Manual-OCR_Page_334
	SVI328-Basic-Reference-Manual-OCR_Page_335
	SVI328-Basic-Reference-Manual-OCR_Page_336
	SVI328-Basic-Reference-Manual-OCR_Page_337
	SVI328-Basic-Reference-Manual-OCR_Page_338
	SVI328-Basic-Reference-Manual-OCR_Page_339
	SVI328-Basic-Reference-Manual-OCR_Page_340
	SVI328-Basic-Reference-Manual-OCR_Page_341
	SVI328-Basic-Reference-Manual-OCR_Page_342
	SVI328-Basic-Reference-Manual-OCR_Page_343
	SVI328-Basic-Reference-Manual-OCR_Page_344
	SVI328-Basic-Reference-Manual-OCR_Page_345
	SVI328-Basic-Reference-Manual-OCR_Page_346
	SVI328-Basic-Reference-Manual-OCR_Page_347
	SVI328-Basic-Reference-Manual-OCR_Page_348
	SVI328-Basic-Reference-Manual-OCR_Page_349
	SVI328-Basic-Reference-Manual-OCR_Page_350
	SVI328-Basic-Reference-Manual-OCR_Page_351
	SVI328-Basic-Reference-Manual-OCR_Page_352
	SVI328-Basic-Reference-Manual-OCR_Page_353
	SVI328-Basic-Reference-Manual-OCR_Page_354
	SVI328-Basic-Reference-Manual-OCR_Page_355
	SVI328-Basic-Reference-Manual-OCR_Page_356
	SVI328-Basic-Reference-Manual-OCR_Page_357
	SVI328-Basic-Reference-Manual-OCR_Page_358
	SVI328-Basic-Reference-Manual-OCR_Page_359
	SVI328-Basic-Reference-Manual-OCR_Page_360
	SVI328-Basic-Reference-Manual-OCR_Page_361
	SVI328-Basic-Reference-Manual-OCR_Page_362
	SVI328-Basic-Reference-Manual-OCR_Page_363
	SVI328-Basic-Reference-Manual-OCR_Page_364
	SVI328-Basic-Reference-Manual-OCR_Page_365
	SVI328-Basic-Reference-Manual-OCR_Page_366
	SVI328-Basic-Reference-Manual-OCR_Page_367
	SVI328-Basic-Reference-Manual-OCR_Page_368
	SVI328-Basic-Reference-Manual-OCR_Page_369
	SVI328-Basic-Reference-Manual-OCR_Page_370
	SVI328-Basic-Reference-Manual-OCR_Page_371
	SVI328-Basic-Reference-Manual-OCR_Page_372
	SVI328-Basic-Reference-Manual-OCR_Page_373
	SVI328-Basic-Reference-Manual-OCR_Page_374

