User's Manual
for

CBM 5%-inch
Dual
Floppy Disk
Drives

c: commodore

User’'s Manual

for

CBM Dual Drive
Floppys

Model 2040—Model 4040
Model 3040—Model 8050

Appropriate for use with:
Commodore Computers
 Series 2001 (CBM-PET)
 Series 3000 (CBM)
 Series 4000 (PET)
 Series 8000 (CBM)

Part Number 320899

October 1980

(z commodore

® 1980 Commodore Business Machines, Inc.

Chapter 1

Chapter 2

Chapter 3

Table of Contents

Page

Introductionttt ittt i ettt e 1
General Informationot innnn 2
LT cd 5 o1 T) + 3
FrontPanel i, 3
BackPanel 3

Interior Configuration 4

The Diskettecovnu.. e 5
Specificationsccii it i, 5

Care Of The 2040, 3040,4040and 8050 9
Care Of The Diskettescciviriiiiiiiiiiinanannns 9
Unpacking The Disk Drive iiiiiiennen .. 9
Preparing To Use Your Disk Drivecciiiieinnnnnn, 11
Connecting The Disk Drive To The Computer 11
Performing The Power-OnTestccoviiiiinvvnnnnn, 12
Inserting The Diskette Into The 8050 13
Inserting The Diskette Into The 2040, 3040 and 4040 .. 13

The 4040 and 8050 Performance Test i4

The 2040 and 3040 Performance Test 17

Learning How To Use Your Floppy Disk Drive 21
The Block Availability Map (BAM)coiiiiernenennn. 22
The Disk Operating System (DOS)coiirireninnn.. 22
Disk Maintenance Commands e 23
NEW i i e e i e e 24

HEADER (BASIC 4.0 Direct Command) 25

Initialization (2040 and 3040) 25
Initialization (4040) i, 26
Initialization (8050) i i 26

The Directoryo ii ittt it i rnnns 26

LOADS ...t iiiiiians 26

DIRECTORY (BASIC 4.0 Direct Command) . 27

Printing The Directory 27

il

iv,

VALIDATE e
COLLECT (BASIC 4.0 Direct Command). . ..
DUPLICATE ... it i

COPY (BASIC 4.0 Direct Command)
CONCAT (BASIC 4.0 Direct Command).
RENAME i
RENAME (BASIC 4.0 Direct Command)
SCRATCH i e i
SCRATCH (BASIC 4.0 Direct Command). . ..

Chapter 4 BASIC Commands For DataHandling
BASIC Commands Associated with Floppy Disk Drives
SAVE and DSAVE (Writing a Program to a Diskette). . .
LOAD and DLOAD (Reading a Program from a
Diskette)coiiviiiiii i

Closing The Command Channel
Closing The Data Channel
PRINTH .o e
INPUTH . e i e
GETH . e
RECORD# ...t e e
Quickload Feature (BASIC4.0) iiiininann.
Moving a Tape Programto Disk

Chapter 5 Advanced Disk Programming i
Commodore Disk Operating System (DOS)
Disk Utility Command Set viiiiivinen...

BLOCK-READ i
BLOCK-WRITEcciiiiiiiiiinannnnn,
BLOCK-EXECUTE iiiiiiinin.n.
BUFFER-POINTER e
BLOCK-ALLOCATE e
MEMORY ... i e

MEMORY-WRITEc..v.t.

MEMORY-READot

USER ..ot e e
8050 Disk Zomnes e

Chapter 6 Advanced File Handlingt
Special Open and Close Statements For Direct Access

Random AccessExample
ToCreate AFile..................

ToSee ARecordccvvivnunnn.
To Change ARecord
Getting The Directory of Listings

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Figure

Ot O =

Table

=t
N OWOD -1 Ok =

Ending The Program 69

Relative Files 4040,8050 69

Creating A RelativeFile 72

Expanding A RelativeFile 72

Accessing A RelativeFile 73

Simplifying The Use of Commodore Disk-Related Commands 71
Loading The DOS Support Programcccovviieinn.. 77
Using The DOS Support Symbols: >and @ 78
Loading A Program With The /. 78
Loading And Running A Program With Up Arrow 79
Special DOS Support Information 79
Error Messages — Pattern Matching File Names — Disk Commands. 81
Requesting Error Messages: Commodore Disk Drives 81
Summary Of CBM Floppy Error Messages 82
Description of DOS Error Messages 32
Pattern Matching ittt 85
User’s Quick Reference: Disk Commandsc...... 86
Random 1.00 Program Listingcivtiiniivnnnn.. 89
Index e e e e 95

List of lllustrations

Title Page

Models 2040, 3040, 4040, 8050: Rear Viewc....... 5
Floppy Disk HOOKUDt vttt ittt it e e 12
Position For Diskette Insertion e, 13
2040, 3040, 4040 Format: Expanded View of A Single Sector 62
8050 Format: Expanded View of A Single Sector 63
List of Tables

Title Page

Suggested Reading List0 ittt iiiieinnnas 4
Specifications: Model 8050 Dual Drive Floppy Disk 6
Specifications: Models 2040/3040 Dual Drive Floppy Disk 7
Specifications: Model 4040 Dual Drive Floppy Disk 8
Standard Jump Table ittt i e 53
Block Distribution By Trackc0iiiiiiiiiiininnnnns 54
2040,3040 BAMFormatciviinrireiiiianiinnians 55
2040, 3040 Directory Headercoviitiieiininneanennn 55
4040 BAM FOIrmMat ... viiii i iietieeneeteeneannaenaenens 56
4040 Directory Headercii ittt ittt tiiteneianaaanans 56
8050 Directory Header Blocko in it iii it i i eea e 57

SO0 BAM Format . ..o v ittt ittt ettt ieninnsennenenanans 58

vi

13
14
15
16
17

Directory Format N 60

Sequential Format00ttt iinennnnnn. 61
Program File Format i, 61
Relative File Format i iiiiiiiinnnnn. 70
User’s Quick Reference —Disk Commands 87

Chapter

INTRODUCTION

The disk-oriented Commodore Computer System was designed around the central concept
of providing you, the user, with large file-handling capabilities supported by BASIC pre-
gramming commands and further simplified by DOS Support command abbreviations.

Read the Table of Contents and become acquainted with the broad scope of material
covered in this manual. It has been designed to assist you in pursuing an educational pro-
gram by utilizing the computer as an adjunct to the learning process. That is, once the disk
drive is properly interfaced to a Commodore Computer, YOU become as important an ele-
ment of the system as the hardware. Your importance, however, is measured in direct rela-
tionship to how well you understand how to effectively utilize the hardware and software.

That’s why it is best to think of your computer and disk drive as only part of a system.
Grasping and understanding the concept that each individual component acts and reacts to
signals and commands from other devices in the system will greatly accelerate your funda-
mental grasp of how to operate, control, and master the system. This basic concept forms
the basis of this manual: teaching you how to gain mastery of the system so that it will
perform as desired. That is the primary reason this manual is laid out in a building block
fashion: it permits you to advance as fast as you desire.

The first chapters discuss basic hard ware features and permit you, right from the start, to
become familiar with the disk drive by doing the performance tests which comprise the first
essential ‘“hands on”’ experience. Then, by actually using your particular disk drive and
learning to carefully follow instructions, you can gain confidence in order to proceed to
more comprehensive subjects.

By the time you begin Chapter 3—Learning How To Use Your Floppy Disk Drive—you will
have already used some portions of the DOS Support system which is not fully described
until Chapter 7. The reason for this procedure lies within the purpose of DOS Support:
simplifying commands. It is actually easier to instruct a new user by using the simplified
command structure of DOS Support than attempting to explain the entire command hier-
archy at an early stage. This concept of providing you with enough essential information to
complete a task, a step-by-step description of the task, and meaningful examples is a feature
of this manual which will provide you with sufficient incentive to actually complete the
task.

The manner in which this manual is laid out encourages the concept of learning by doing.
Difficult concepts and procedures have been broken down into steps that walk the user
through examples which provide ample opportunity to experiment later by returning to
each command description. When possible, the command format has been included with the
command description and, as an additional aid, a User’s Quick Reference has been placed in
Chapter 8 for easy access if problems persist.

Error messages are also presented in Chapter 8 where they can be quickly referenced, if
needed. The Error Message discussions have been expanded to include:

® How to request error messages.

e Error message summary.

® Detailed error message descriptions.

For those users who have been reluctant to attempt disk programming because of the pre-
sumed degree of difficulty, note that the entire disk command hierarchy is structured in this
manual from least difficult to more complex:
® Commands for file manipulation and maintenance
Commands for data handling
Advanced programming
Advanced file handling
Simplified commands

Users who have attained some degree of programming skills may desire to begin with the
advanced subjects such as random access or relative files while others may be content with
just following the manual’s format. In either case, this manual has been laid out to provide
the user with essential information in a logical sequence. Follow the examples, attempt the
step-by-step procedures, and learn by doing.

GENERAL INFORMATION

With the purchase of your Commodore Dual Drive Floppy Disk you have greatly enhanced
the computing power of your Commodore system. To get the most out of your system you
should study your computer’s user guide, and if necessary the BASIC manuals listed in
Table 1. You will benefit most if you first read through this entire manual, taking note of
those features that relate to your particular floppy as well as those which are common to all
CBM Floppys.

The information presented in this manual is extensive and may, in some cases, present in-
formation that is currently beyond your particular level of expertise. However, by carefully
and thoughtfully studying its contents you will gain the confidence necessary to progres-
sively upgrade your programming skills and expertise,

This manual presents discussions, descriptions, practices and procedures relating to the use
and operation of all Commodore 5-1/4-inch Dual Floppy Disk Drives.

Four models are discussed:
Model 2040 (DOS 1)
Model 3040 (DOS 1)
Model 4040 (D0OS2)
Model 8050 (DOS 2.5)

The floppys are operationally compatible with the following Commodore Computers.
1. Series 2001 — 16K and 32K — Operating With BASIC Version 3.0

2. Series 2001 — PET 8K — Upgraded to BASIC Version 3.0

3. Series 3000 — 16K and 32K — Operating With BASIC Version 3.0

4. Series 4000 — PET 8K, 16K, and 32K — Operating With BASIC Version 4.0

5. Series 8000 — 32K — Operating With BASIC Version 4.0

For ease of reference, the Models 2040, 3040, 4040, and 8050 Dual Drive Floppy
Disks will be referred to in this manual as “the 2040”, “the 3040”, “the 4040”,
and “the 8050, respectively. All descriptions and discussions are common unless
noted otherwise.

DESCRIPTION

All CBM Floppys described in this manual are dual-drive diskette storage devices. Their
individual primary components consist of read/write controls, drive motor electronics, two
drive mechanisms, two read/write heads, and track positioning mechanisms. All disk drives
discussed in this manual conform to IEEE-488 interface requirements. Because each device
is an “intelligent” peripheral, their operation requires no space in the computer’s memory.
This means you have just as much computer memory available to you as when you do not
have the disks attached.

Front Panel

The front panel of the respective disk drive consists of an identification panel across the top;
slots in which to insert two diskettes; and doors to close after inserting the diskettes. When
the door is closed, the diskette is clamped onto the diskette spindle hub. Also on the front
panel are three LED indicator lights. The one on the right is called the Drive O Active Indi-
cator, and lights when drive 0 is active. The LED on the left does the same for drive 1. On
the 8050, the LED in the middle is a two-color power/error indicator. It is normaily green,
indicating power ON but flashes red whenever a disk error occurs. On the 2040, 3040, and
4040 the middle LED is activated if power is applied or removed, and whenever an error
occurs.

Back Panel

The back of each disk drive contains an IEEE-488 interface connector. Near the panel’s
lower edge is the power ON/OFF switch. There is also a “slow blow”” fuse, and the AC
power cord.

Table 1. Suggested Reading List

Pet/CBM Personal Computer Guide.
C. S. Donahue and J. K. Enger, Osborne/McGraw-Hill, 630 Bancroft Way,
Berkeley, CA 94710

Hands-On Basic with a Pet.
H. D. Peckham, McGraw-Hill, 1979

Entering BASIC.
J. Sack and J. Meadows, Science Research Associates, 1973

BASIC: A Computer Programming Language.
C. Pegels, Holden-Day, Inc., 1973

BASIC Programming.
J. Kemeny and T. Kurtz, Peoples Computer Co., 1010 Doyle (P.O. Box
3100), Menlo Park, CA 94025, 1967

BASIC FOR HOME COMPUTERS.
Albrecht, Finkle and Brown, Peoples Computer Co., 1010 Doyle (P.O. Box
3100), Menlo Park, CA 94025, 1973

A Guided Tour of Computer Programming in BASIC.
T. Dwyer, Houghton Mifflin Co., 1973
Programing Time Shared Computer in BASIC.
Eugene H. Barnett, Wiley-Interscience, L/C 72-175789
Programming Language #2.
Digital Equipment Corp., Maynard, MA 01754
101 BASIC Computer Games.
Software Distribution Center, Digital Equipment Corp., Maynard, MA 01754

What do To After You Hit Return.
Peoples Computer Co., 1010 Doyle (P.O. Box 3100), Menlo Park, CA 94025

Basic BASIC.
James S. Coan, Hayden Book Co., Rochelle Park, NJ

WORKBOOKS 1-5.
T.I.S., P.O. Box 921, Los Alamos, NM 87544

Programming the 6502,
R. Zaks, Sybex, 1978

24 Tested, Ready-to-Run Game Programs in Basic.
K. Tracton, Tab Books, 1978

Some Basic Programs.
M. Borchers and R. Poole, Osborne & Assoc. Inc., 1978

Basic Programming for Business.
I. H. Forkner, Prentice-Hall, 1977

The Channel Data Book.
B. Lewis, 5960 Mandarin Ave., Goleta, CA 93017, 1978

PET and the IEEE 488 Bus (GPIP).
QOsborne/McGraw-Hill, 630 Bancroft Way, Berkeley, CA 94710

Interior Configuration

The interior of your floppy contains two disk drives. All the logic for the disk drive is con-
tained within the unit. The mechanical devices are, for the most part, located beneath the
disk spindles.

The Diskette

The diskette (also known as a minifloppy, floppy diskette, minidiskette, etc.) is similar to
the standard flexible disk. There are several reputable manufacturers of the 5 1/4-inch

diskettes. You should make sure that you buy diskettes for SOFT SECTORED FORMAT.
Your Commodore dealer can supply your needs.

Specifications

Table 2 presents the specifications for the 8050, Table 3 the specifications for the 2040 and
3040, and Table 4 the 4040.

s EE:F‘:- o "“,“-"’"‘r"lr“-.
PIGGYBACK Yo A

Lo A s
CONNECTION >
(IEEE PLUG) r"'f:

: rL o> -— o :L’ v
i SR Sl

axy Lo .
||HIIIIIHIIH|I|IIIII

T,
I|lll||IIIIII||||||I|Il||II1IlIIIIIIIlIIlIIllllIll

ON/OFF
SWITCH

agmm s —
=
——

(AC)

Figure 1 —Models 2040, 3040, 4040, 8050: Rear View

Table 2. Specifications: Model 8050 Dual Drive Floppy Disk

STORAGE:

Total capacity
Sequential
Relative

Directory entries
Sectors per track
Bytes per sector
Tracks

- Blocks

IC’s:

Controller
6502
6530
6522

Interface
6502
6532 (2)
6564 (2)

Shared
6114 (8)

PHYSICAL:
Material
Dimensions

Height
Width
Depth

ELECTRICAL:

Power requirements

Voltage

Frequency

Power
MEDIA:

Diskettes

533248 bytes per diskette

521208 bytes per diskette

464312 to 517398 bytes per diskette
depending upon file size,

182880 bytes per file

65535 records per file

224 per diskette

23 to 29

256

77

2083

microprocessor
1/0, RAM, ROM
1/0, interval timers

microprocessor
I/0, RAM, interval timers
ROM

4x1K RAM

18 ga. steel

6.5"
15.0"
14.35"

100,117, 220, or 240 VAC
50 or 60 Hertz
50 watts

Standard mini 5 1/4”, single sided,
single density

T—

U 4

Table 3. Specifications: Models 2040/3040 Dual Drive Floppy Disk

STORAGE:

Total capacity
Sequential
Random
Directory entries
Sectors per track
Bytes per sector
Tracks

Blocks

IC’s:

Controller
6504
6530
6522

Interface
6502
6532 (2)
6332 (2)

Shared
6114 (8)

PHYSICAL:
Material

Dimensions
Height
Width
Depth

ELECTRICAL:

Power requirements (2040)
Voltage
Frequency
Power

Power requirements (3040)
Voltage
Frequency
Power

MEDIA:

Diskettes

176640 bytes per diskette
170180 bytes per diskette
170850 bytes per diskette
152 per diskette

17t0 21

256

35

690

microprocessor
I/0, RAM, ROM
I/0, interval timers

microprocessor
1/0, RAM, interval timers
ROM

4x1K RAM

18 ga. steel

6.5"
15.0"”
14.35"

120 VAC
60 Hertz
50 Watts

100, 220, or 240 VAC
60 Hertz
50 Watts

Standard mini 5 1/4", single sided,
single density

i

A 010 P e ot

K

————_

3

Table 4. Specifications: Model 4040 Dual Drive Floppy Disk

STORAGE:

Total capacity
Sequential
Relative

Directory entries
Sectors per track
Bytes per sector
Tracks

Blocks

IC’s:

Controller
6504
6530
6522

Interface
6502
6532 (2)
6332 (2)

Shared
6114 (8)

PHYSICAL:

Material
Dimensions
Height
Width
Depth

ELECTRICAL:

174848 bytes per diskette

168656 bytes per diskette

167132 bytes per diskette
65535 records per file

144 per diskette

17 to 21

256

35

683

microprocessor
I/O0, RAM, ROM
I/O, interval timers

microprocessor
I/O, RAM, interval timers
ROM

4x1K RAM

18 ga. steel

6.5"
15.0"
14.35"

Power requirements (4040) USA (domestic)

Voltage
Frequency
Power

120 VAC
60 Hertz
50 Watts

Power requirements (4040) (international)

Voltage

Frequency

Power
MEDIA:

Diskettes

100, 220, or 240 VAC
60 Hertz
50 Watts

Standard mini 5 1/4", single sided,
single density

CARE OF THE 2040, 3040, 4040 AND 8050
The disk drive should be placed on a flat surface free of vibration. It is important that dust
particles be kept at a minimum since a particle buildup will interfere with optimum opera-

tion. If you should experience a hardware failure contact your Commodore dealer. Any
attempt to correct the problem yourself could result in voiding the warranty.

CARE OF THE DISKETTES

Handle diskettes with care. Follow these instructions to maintain the quality of the diskette
and to protect the integrity of the data:

1. Return the diskette to its storage envelope whenever it is removed from the drive.

2. Keep the diskettes away from magnetic fields. Exposure to a magnetic field can distort
the data.

3. Never leave a diskette on top of your computer or disk drive.

4. Do not write on the plastic jacket with a lead pencil or ball-point pen. Use a felt tip pen
or fill out the label before attaching it to the jacket.

5. Do not expose diskettes to heat or sunlight.

6. Do not touch or attempt to clean the diskette surface. Abrasions will cause loss of stored
data.

7. Before applying power to the 2040, 3040, or 4040 open the drive doors and remove
diskettes.

UNPACKING THE DISK DRIVE

Before unpacking the disk drive, inspect the shipping carton for signs of external damage. If
the carton is damaged, be especially careful when inspecting its contents. Carefully remove
all packing material and the contents of the carton. DO NOT discard any packing material
until you have made sure you have located all the contents of the carton! The carton
should contain:
1. Commodore Dual Floppy Disk Drive
2. User Manual, Number 320899
3. One of the following TEST/DEMO diskettes:
a. 2040/3040/4040 TEST/DEMO diskette, P/N 4040037
b. 8050 TEST/DEMO diskette, P/N 8050050

If any items are missing, please contact your Commodore dealer immediately.

10

NOTES

R

o o

AR

Chapter

PREPARING TO USE
YOUR DISK DRIVE

Before starting to use your disk drive, make sure it is in good working condition. This in-
cludes properly connecting it to your computer, giving it a power-on and initial checkout
test, and finally the performance test using the appropriate TEST/DEMO diskette.

CONNECTING THE DISK DRIVE TO THE COMPUTER

One of two connector cables are required to interface the floppy to the computer. These
cables can be supplied by your Commodore dealer.

1. PET-to-IEEE cable, P/N 320101
Use this cable if the disk drive is to be the only (or first) IEEE device connected to your
computer.

2. IEEE-to-IEEE cable, P/N 905080
Use this cable if your disk drive is to be connected (‘““daisy-chained”) to another peri-
pheral device such as the Commodore Model 2022, or any other suitable interfaced
printer.

NOTE: The disk drive should be the first peripheral attached to the computer if other de-
vices are to be “daisy-chained”.

Follow these steps to connect the disk drive to your computer:
STEP 1: Turn power OFF to the computer.

STEP 2: Place the disk drive in a convenient location as close as possible to the computer.
DO NOT connect the disk drive to a power outlet at this time.

STEP 3: Connect the PET-to-IEEE cable between the IEEE-488 interface connector on the
computer and the connector on the disk drive, If additional IEEE devices are to
be connected, the IEEE-to-IEEE cable(s) must be used.

STEP 4: Connect the disk drive power cable to an AC outlet. DO NOT turn on power at
this time,

11

Floppy Disk

CBM Computer

™~ =

I

/ L
~ -
i D 3
Q™
—7 IEEE-t0-1EEE Cable
= (P/N 90508C) -
PET-to-1EEE Cable
(P/N 320101)

Printer

Figure 2 — Floppy Disk Hookup

PERFORMING THE POWER-ON TEST

You are now ready to proceed with the power-on part of the checkout:
STEP 1: Open both disk drive doors. Ensure that no diskettes are present in either drive.
STEP 2: Turn power ON to the COMPUTER and verify that it is working properly.

STEP 3: Apply power to the disk drive. All three indicator lights (LEDS) on the front
panel will flash twice. On the 8050, the two drive LEDs will go out and the center
two-color power/error LED will stay green indicating power ON. If the drive
lights remain on, all lights flash continuously, or if the power/error LED is red for
more than five seconds, turn the power OFF. Wait one minute and try again. If
any light remains lit, or all lights flash continuously, contact your Commodore
dealer immediately.

NOTE: If the problem persists, try disconnecting the other devices attached to the IEEE

bus. This should assure that a problem related to another device does not affect the disk
drive.

12

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

INSERTING THE DISKETTE INTO THE 8050

Insert the diskette into the slot designated “Drive 0” and with the write protect
tab oriented to the left.

Once the diskette is in the slot, push gently on the diskette until you hear a dis-
tinct “clock”. The diskette is now properly positioned in the drive,

Press DOWN firmly on the spring-loaded door of the drive to lower the diskette
into the correct position. It is important to press firmly on the door in a smooth
motion to avoid damaging the diskette.

To remove the diskette, press DOWN firmly on the spring-loaded door. This will
release the spring and raise the diskette. When the diskette is level with the open-
ing, press UP on the door. This will release the diskette and push it out toward the
front of the drive. The diskette is now free to be removed from the drive,.

DO NOT ATTEMPT TO CLOSE THE DOOR WITHOUT A DISKETTE IN
PLACE. The door is locked open by a mechanical interlock mechanism associated
with the diskette ejector that prevents the door from closing if no diskette has
been loaded.

WHEN COVERED, DISKETTE

WRITE
PROTECT
NOTCH

e >

CONTENTS CANNOT
BE ALTERED
FHOAOWNWOD

Figure 3 — Position for Diskette Insertion

INSERTING THE DISKETTE INTO THE 2040, 3040 AND 4040

CAUTION: NEVER APPLY POWER TO THE DISK DRIVE IF DISKETTES ARE
PRESENT (LOCKED AND SEATED) IN EITHER DRIVE 0 OR DRIVE 1.

STEP 1:

STEP 2:

Ensure that the power to the disk drive is OFF and DO NOT apply power until
you complete this step. Open both disk drive doors and make sure that no
diskettes are present in either drive.

If the preceding conditions have been met, you may apply power to the disk
drive. '

13

STEP 3: Insert the diskette into the slot marked “Drive 0” and with the write protect tab
oriented to the left.

STEP 4: Once the diskette is in the slot, gently push on it until it is fully seated.

STEP 5: Press DOWN firmly on the spring-loaded door of the drive until you hear a dis-
tinct “click”. The diskette is now locked and seated in drive 0, ready for process-
ing by the computer.

STEP 6: To remove the diskette, insert your index finger under the lip of the spring-loaded
door and gently PULL. This will reiease the door and permit access to the disk-
ette. The diskette is now free to be removed from the drive.

THE 4040 AND 8050 PERFORMANCE TEST

When you have successfully completed the Power-On test, proceed with the Performance
Test. Don’t worry if you don’t fully understand exactly what is happening in this test. At
this point, enter the commands just to get a feel for what you can do with your disk. If UN-
EXPECTED results are obtained during any step of the test, stop and start over again. The
most likely cause of a problem is an improperly entered command. This is to be expected
until you become familiar with your disk unit.

- All commands are entered via the keyboard and must be followed by a carriage return:
press the RETURN key on your keyboard.

NOTE: Commands must be entered exactly as shown, DO NOT insert any spaces unless
shown in the example. If the error indicator lights, you may be able to continue the
example anyway. Re-enter your last command. If the light goes out, your correction was
successful and you may continue.

NOTE FOR BUSINESS KEYBOARD USERS ONLY: You can set your computer for
upper case character entry. Do this by typing:

POKE 59468,12 and pressing the RETURN key.

Although it is not absolutely necessary to give this command, it does permit easy entry.

In addition, the examples in this manual can be duplicated exactly when you use only

upper case. If this step is omitted the display will be in lower case letters. DO NOT use the
shift key when entering commands. (POKE 59468,14 will return the user to lower case letters.)

STEP 1: Insert the DEMO diskette into drive O as previously instructed.

STEP 2: Type: LOAD “*” 8 and press RETURN. The computer will load the first file
from the diskette in drive O and display the following:

FREADY.
LOAD &, 2
SEARCHING FORE #

LOADTHG
FEADY.
i

STEP 3: Type: RUN and press RETURN. This will cause the DOS Support Program to be
executed. (This program is not necessary for the disk unit to operate; it just
simplifies the direct mode commands.) A brief introductory descrption of DOS
Support is presented in Chapter 3 as it applies to Chapter 3 operations. A de-
tailed description of DOS Support is presented in Chapter 7.

STEP 4: Insert a blank diskette into drive 1 and type:

>N1:DEMO,99
>C1=0

This procedure formats the diskette and copys all files from drive O to drive 1,
thus creating a backup of the DEMO diskette. Remove the DEMO diskette from

drive O and return it to its protective envelope. Remove the diskette from drive 1
and place it in drive 0. Close the door to drive 0.

STEP 5: Type: LOAD “PERFORMANCE TEST”,8

The screen will display:

SEARCHING FOF FERFORMANCE TEZS
LORD TG

FEARDY.
|

STEP 6: Type: RUN and press RETURN.

The program instrucis you to place a blank diskette into each drive. The Per-
formance Test Program executes a shortened version of the test used by Commo-
dore in final inspection of the 4040 or 8050. The purpose of this test is to ensure
that the unit is functioning correctly and will take approximately seven minutes
to complete.

NOTE: Do not use diskettes containing any valuable information since the Per-
formance Test Program will re-format them and any data will be lost. The test
program will label these diskettes “Test Disk 1”” and “Test Disk 2”. These disk-
ettes are ready for further use when the test program is completed and the per-
formance test has been satisfied.

STEP 7: Press RETURN, the following will display:

4[14[1 FCT et % bt A

STEP 8: Enter the appropriate response to the question and press RETURN.

The computer will calculate the maximum number of tracks for the particular
disk drive and begin the performance test. The screen displays:

43408 PERFFORMANCE TEZT

SE58 FERFORMAMCE TEZT

-IFHTIH oI }ETTE- ™ BOTH DRIVES

15

The computer will first format the diskette in drive O then the diskette in drive 1.

This procedure takes up to three minutes per disk. At the end of the operation

the screen displays:
HEM=-& COfMEMD QK 8 88, &
HEL~1 COMMAND OF 1 83,

BOTH TRIVES FPHZS MECHAMICRL TEST

The computer conducts the remainder of the Performance Test and displays:

.,..
V=
—
R

A A
VT

OFEH WREITE FILE M

z WMREITIMG DATA TO o

| CLOSE WRITE DATE TO &

' MEITIMG DATA TO 1

CLOSE WRITE DRTA TO 1
OFEM FEAD FILE OH &
OFEH READ FILE OH
FEADIHG DATH FROM
SCRATOH FILE OM @
; FILES SCRATCHED
| SCRATCH FILE OM 1
FILES SCEARTCHED
WRITE TR i

it

i O

1 0 ;

g OiH B AR G R 1% B |

FEAD TF S OH 1 5, G

FERD HCKE 1 ON & T E A, D

FEAD “ACKE 1 OM 1 4 A,

-
s

.,,4
A

s
R

N

A
AN AR
AR AR

,_

M Lo RS
T

NI A AR

-
N
-
'

,.
YN
)

—

= T = 5

UMIT HAS PR=SED FERFOEMAMCE TEST!

FULL DISKETTES FEOM DEIVES EEFORE
TURHING FOWER OFF.

REALY.
i

STEP 9: Remove the diskettes and return them to their protective jackets. The floppy has
passed the Performance Test.

STEP 10: If any problems have been encountered during this phase of the test, return to
Step 1 and repeat the entire procedure. If problems persist and you do not reach
a satisfactory conclusion to the Performance Test, contact your Commodore
dealer.

i
i
|

Ly

]

THE 2040 AND 3040 PERFORMANCE TEST

When you have successfully completed the Power-On test, proceed with the Performance
Test. Don’t worry if you don’t fully understand exactly what is happening in this test. At
this point, enter the commands just to get a feel for what you can do with your disk. If UN-
EXPECTED results are cbtained during any step of the test, stop and start over again. The
most likely cause of a problem is an improperly entered command. This is to be expected
until you become familiar with the procedure.

All commands entered via the keyboard must be followed b a carriage return: press the
RETURN key.

NOTE: Enter the commands exactly as shown. DO NOT insert any spaces unless shown in
the example, If the error indicator lights, you may be able to centinue the example anyway.
Re-enter your last command. If the light goes out, your correction was successful and you
may continue.

STEP 1: Insert the DEMO diskette into drive O as previously instructed. Insert a blank
diskette into drive 1. Close both drive doors.

STEP 2: Type: OPEN 1,8,15

This command opens logical file 1 on device 8. The secondary address of 15 opens

the command channel to the device. The screen displays your entry followed by
READY.

NOTE FOR BUSINESS KEYBOARD USERS ONLY: To set the computer for
upper case character entry type:

POKE 59468,12 and press RETURN

Although it is not absolutely necessary to give this command prior to communi-
cating with the disk drive, it does permit easy entry. In addition, the examples in
this manual can be duplicated exactly. (POKE 59468,14 will return the user to
lower case letters.)

STEP 3: Type: PRINT#1,“10”
This command initializes drive 0. The initialization procedure places the magnetic
head of the drive in the proper position above the diskette. This process is neces-
sary each time the diskette is removed and inserted into the drive. The computer
displays your entry, then the word READY.

STEP 4: Type: LOAD**” 8 and press RETURN.

The screen displays:

LORD"#", =
SEARCHING FOR #

LEADIHG
FEADY.
|

17

18

STEP 5:

STEP 6:

STEP 7:

STEP 8:

Type: RUN.

This causes the DOS support program to be executed. (This program is not neces-
sary for the disk unit to operate, it just simplifies the direct mode commands.) A
brief introductory discussion of DOS Support is presented in Chapter 3 as it

applies to Chapter 3 operations. A detailed description of DOS Support is pre-
sented in Chapter 7.

Type: >D1=0
This commands the disk drive to make a backup copy of the DEMO diskette.

Remove the original DEMO disk from drive and return it te its protective
envelope. Insert the backup disk into drive 0.

Type: >10
This command initializes the backup diskette.
Type: LOAD‘‘0:DIAGNOSTIC BOOT”,8

This command loads the Diagnostic Boot program from the diskette in drive 0
intc memory. The screen displays your-entry and:

SEARCHIMG FOR @ DIAGHOSTIC BOOT
LOADIMG
FEADY,

STEP 9:

STEP 10:

STEP 11:

STEP 12:
STEP 13:

Concurrent with the display, the drive 0 indicator lights and the drive O motor

runs.

REMOVE THE BACKUP DISKETTE BEFORE PROCEEDING TO THE NEXT
STEP.

Type: RUN and press RETURN

Follow the directions on the screen. If all three indicators flicker continuously,
the test is passed. If all indicators remain lit in a steady pattern, the directions
on the screen can be used to find the problem area. After 30 seconds of opera-

tion, reset the disk drive by turning the computer’s power switch OFF, then ON.

Simultaneously press SHIFT and CLR/HOME to clear the screen. Use the POKE
command described earlier to set the computer for upper case character entry.

RETURN THE BACKUP DISKETTE TO DRIVE 0
Type: >I0

This command initializes the diskette in drive 0.

STEP 14: Type: /0:PET DISK

This loads the PET DISK program from the diskette in drive 0 into memory.
The screen displays your entry and:

SERFCHING FOR &FET DISE
LORTIIHG

FERDY.
|

STEP 15: Type: RUN

The PET DISK program is displayed until terminated. Note that you can hear
the drive 0 motor running intermittently as each program loads the next.

STEP 16: Press the RUN/STOP key.

Simultaneously press SHIFT and CLR/HOME. This completes the 2040 and
3040 performance test.

NOTES

19.

NOTES

[=}
[}

Chapter

LEARNING HOW TO USE
YOUR FLOPPY DISK DRIVE

Your CBM Floppy Disk Drive adds and enhances your computing power with added storage
and file handling capability and is controlled directly with:

e BASIC commands entered via the keyboard,

e BASIC statements within programs, and

® special disk commands.

In this chapter you will learn how to apply those commands and statements. This chapter is
organized in such a way that the functions and format of disk commands are described in a
manner which permits the user to perform disk-related tasks. For BASIC 4.0 users, those

BASIC commands which correspond to each disk maintenance command are also discussed.

Before using your floppy disk make sure you know how to:
1. operate your Commodore Computer,
2. do elementary programming in BASIC, and
3. open and close files.

NOTE: The BASIC statements described in this chapter apply specifically to the 2040,
3040, 4040, and 8050. Certain of the commands and statements may follow a slightly dif-
ferent format or produce different results from those described herein when they are used
with the computer or with other peripherals. Consult the appropriate manual for the exact
usage of these commands and statements in other applications.

This chapter will first acquaint the user with those fundamental disk commands that per-
form disk maintenance and file manipulation and will then progressively advance toward an
understanding of those BASIC commands used for data handling. Approached in this man-
ner, the user will then have developed the necessary confidence and programming skills to
proceed to advanced disk programming techniques. Practice the disk commands, read the
examples, and follow the step-by-step illustrations of their usage. The understanding of the
more advanced disk programming techniques will depend to a large degree upon how well
the fundamentals have been mastered.

21

22

To facilitate your understanding and mastery of Commodore BASIC, two computer terms
are stressed in this Chapter: Block Availability Map (BAM) and Disk Operating System
(DOS). Although these are conventional terms, they will be briefly discussed as they relate
to Commodore Floppy Disk Usage.

THE BLOCK AVAILABILITY MAP (BAM)

The BAM is a disk memory representation of available and allocated space on a disk. When
the system stores information on a disk, the BAM will be automatically referenced by the
DOS to determine what space is available and how many blocks can be allocated. If suffi-
cient space is available to store a given file, it will be stored on the disk and the BAM
updated to account for the space allocated. However, if the DOS detects that a file will
occupy more space than available, an error message will be generated.

Formatting a disk creates the BAM which is then loaded into DOS memory upon initializa-
tion. The BAM is stored on diskette in varying locations depending upon the drive used:

Model BAM Location and Memory Required
2040, 3040, 4040 Track 18, Sector 0
128 bytes
8050 Track 38, Sector 0 and 1
2 Blocks

As changes occur to the BAM in DOS memory, the BAM on disk will be updated to reflect
these changes. Updates to the BAM occur when a program is saved or a CLOSE or DCLOSE
is performed on a new RELative or SEQuential data file. Since the 8050 has two blocks
available for the BAM, only one block of the BAM is loaded into memory at a time. When
updated, this block is written to the disk and the other block loaded into memory. This
interchange of information between the two BAMs, one in DOS memory and the other on
disk, enables the system to maintain a record of free and allocated space on the disk.

This description of the BAM can only stress the importance of initialization when using

either the 2040 or 3040. Sirict attention to this basic rule will enable the user to benefit
from the advantages of developing good programming techniques as well as to develop a
better understanding of the relationship of one element of the system to another.

THE DISK OPERATING SYSTEM (DOS)

The DOS is responsible for managing information exchange between the disk controller and
the computer.

The DOS performs many functions which are transparent to the user but which are vital to
the operation of the system. For example, the DOS monitors the input/output (I/0) of the
disk so that channels are properly assigned and that no lengthy waits for an open channel
occur. In addition to monitoring of disk I/O, the DOS also uses the channel structure to
search the directory and to delete and copy files.

There is another function of DOS called DOS Support which was used during hardware
checkout in Chapter 2. Review the Performance Test procedure and observe the special sym-
bols of DOS Support which were used to duplicate and initialize the disks before these pro-
cedures were fully explained to the user. Because of its ease of use, DOS Support symbols

were easier to implement at that point than attempting to explain the programming pro-
cedures they replace. It is now appropriate to briefly discuss how DOS Support can enhance
and simplify your knowledge of operating your Commodore computer.

The first file on the TEST/DEMO diskette that comes with your disk drive is the Universal
Wedge program, often referred to as DOS SUPPORT. This program, when loaded into com-
puter memory, perniits the user to enter abbreviations for many disk commands.

For example, disk commands which would normally be transmitted to the disk using the
PRINT#1£fn “commandstring” format may be transmitted via DOS SUPPORT by preceding
the command with > or @. Typing slash (/) followed by a program name and RETURN will
cause DOS SUPPORT to load that program into memory. Replacing certain disk commands
with DOS Support special symbols can simplify learning about your Commodore computer
by providing a faster method to communicate with the disk. Chapter 7 contains detailed
instructions concerning the use of these special symbols and their limitations.

DISK MAINTENANCE COMMANDS

The following disk commands permit the user to perform file manipulation and disk
maintenance.

BASIC BASIC 4.0
COMMAND FUNCTION DIRECT COMMAND
r NEW Formats a disk HEADER
INITIALIZE Prepare diskette for use —
Diskette W LOAD‘“$0” Read disk directory DIRECTORY
Level
VALIDATE Reconstruct Block Availability COLLECT
Map (BAM)
L DUPLICATE Duplicates a diskette BACKUP
COPY Copies files (optional COPY
concatenation) CONCAT
File
Level RENAME Renames a file RENAME
SCRATCH Erases a file SCRATCH

NOTE: Diskette commands can be transmitted to the disk by PRINT# commands or
through the abbreviated commands of DOS support. The examples in this chapter assume
that a file has been opened with the OPEN 15,8,15 command. If the error message ?FILE
OPEN ERROR appears upon typing the OPEN command, it means that the logical file was
opened but had not been properly closed. This error condition will automatically close the
file. To recover, retype the OPEN command.

23

NEW

Each time a diskette is placed in one of the drives, both the diskette and the drive must be
prepared for use. A previously unused diskette must first be formatted in the soft-sector
format recognized by your particular disk drive. This may be accomplished by use of the
NEW disk command.

To use the NEW command, to format the diskette and initialize the disk drive, enter the
command:

PRINT#15,“commandstring”

where 15 is the logical file number of a file which has been opened to the disk command
channel (primary address 8, secondary address 15).

The format of NEW is:
“NEWdr:fn xx”
or
“Ndr:fn,xx”
Where dr=the drive number, 0 or 1

fn=the file name you wish to assign to the disk. It may be up to 16
characters long.

xx=a unique two-character, alphanumeric identifier supplied by the user.

The NEW command (with ID specified) is used on an unformatted diskette or one which the
user wishes to reformat. NEW creates the block headers, writing the sync characters, disk
ID, and track and sector numbers at the beginning of each block. The directory header and
the BAM are created and the diskette is made ready to accept data. The command may be
used on an already formatted diskette (with no ID specified) to clear the disk directory and
reinitialize the BAM, deallocating all blocks on the diskette. The time involved in reformat-
ting without an ID is much less than formatting with an ID.

Examplel: OPEN15,8,15
PRINT#15,“NO:TESTDISK,88”

These commands will open the command and error channel to the disk drive and format a
disk in drive 0, giving it a disk identifer of 88.

Here’s an example of reforrnatting a diskette using the NEW command and no disk ID.

Example 2: OPEN1,8,15
PRINT#1,“NO:NEWNAME”’

The diskette will be assigned the name “NEWNAME”’ and the directory and BAM will be
cleared. This procedure will work only if the diskette has been formatted.

The NEW disk command SHOULD NOT be confused with the NEW command in BASIC.
The latter will delete the program currently in memory and clear all variables before enter-
ing a new program.

HEADER (BASIC 4.0 Direct Command)

The HEADER command has the same effect as NEW command but is reserved for those
computers using BASIC 4.0. Since formatting destroys all data previously stored, the
HEADER command has a built-in safety feature that queries the user: ARE YOU SURE? A

positive response to this question permits formatting to take place while a negative response
aborts the operation.

The format of HEADER command is:
HEADER*fn”’,Ddr Ixx
Where: fn=file name supplied by user but limited to 16 characters.
dr=drive number, 0 or 1
xx=a unique two character alphanumeric identifier (ID) supplied by user.

(same parameters as used by NEW command)

Initialization (2040 and 3040)

Whenever a diskette is inserted into either drive, for any reason, it MUST be initialized to
ensure that the information on the BAM (in the disk memory) is the proper information for
the diskette currently in the drive. Failure to properly initialize a diskette each time it is

inserted or reinserted into the drive will result in a DISK ID MISMATCH ERROR and/or
loss of data.

Insert the diskette into drive 1 and initialize as follows:

OPEN 1,8,15
PRINT#1,“I1”

NOTE: FILE OPEN ERROR could occur if a previously opened file was addressed with a
second OPEN command. If the file is still open, the second OPEN command would close the
file. If this error is displayed, retype the OPEN command and proceed.

The diskette in drive 1 is now initialized. Do not confuse formatting and initialization.
Remember that formatting is usually a one-time operation and that re-formatting a disk will
desiroy previcusly stored data.

The INITIALIZE command on the 2040 and 3040 aligns the read/write head with track 1
on the specified diskette. It then moves to track 18, reads the disk label and ID, and loads
this information into the Disk Operating System (DOS) memory.

Since the 2040 and 3040 initialization function depends upon a change of ID to detect a
change of diskette, inserting a diskette with an ID identical to one previously used may lead
to a loss of data. This happens because the computer will reference the BAM left over from
the previous diskette. Since the IDs are identical the DOS assumes there has been no change
of diskette. A SAVE or DSAVE command may now cause new data to be written over good
data already present on the disk because the DOS will use the old map of available storage
area, instead of the current one. The results are unpredictable, and the diskette may become
totally useless. For this reason, unique disk IDs must be used whenever possible for each
diskette.

25

26

Initialization (4040)

The 4040 utilizes a DOS 2 software routine each time the disk is addressed to determine if
initialization is required. If a different ID is detected, the 4040 will automatically initialize
the new disk. Operator initialization is not required if unique IDs are assigned each diskette.

Initialization (8050)

The 8050 utilizes a hard ware feature to detect the removal or insertion of a diskette, so it is
not necessary to initialize since this is an automatic function.

THE DIRECTORY

Confirm that the newly formatted disk has the correct ID and disk name by using one of
the following methods to list the directory. The directory display includes the following
information:
® Disk name
Disk ID
DOS version number
File name
File type
Number of blocks used
Pointer to first block of file
Number of available (free) blocks

There are two methods available to all users for listing the directory. The first method illus-
trates the listing procedure using LOAD and the second, the listing procedure in BASIC 4.0
using the DIRECTORY command. If using a 2040 or 3040, and have removed the disks
from the drives for any reason, the disks must be INITIALIZED before attempting to dis-
play the directory. If using a 4040 or 8050, initialization is not required—insert the diskette
and continue.

LOADS

This procedure will destroy any program currently in computer memory when the directory
is LOADed. (Refer to the description of the >$ DOS Support command in Chapter 7 which
is a non-destructive directory display procedure.)

STEP 1: Place a formatted disk in drive 1. If using a 2040 or 3040, INITIALIZE the disk-
ette and continue.

STEP 2: Type: LOAD*“$1”,8 then press RETURN.

The screen displays:

LORD"®1" .=
SERRCHING FORE #1

LORDIHG
RERDY.
1

STEP 3: Type: LIST

The directory for drive 1 will be displayed. Substituting $0 for $1 in the format
will display the directory for drive O.

DIRECTORY (BASIC 4.0 Direct Command)

This command will display the directory without disturbing the content of the memory.
You may type: DIRECTORY DO using the full word spelling but the preferred short format
is illustrated which uses the first two unshifted characters followed by a shifted R.

To display the directory, type: diRd0 and press RETURN.

If using upper case display, type: DI__DO and press RETURN.

The _in this example represents the upper case display for a shifted R. Typing DI _ D1 will
display the directory for drive 1. Typing DI __ or DIRECTORY will display the directory for
both drives if there is a formatted diskette present in each drive. See your BASIC 4.0
reference manual for a compiete description of this BASIC command.

Printing The Directory

Quite often, it becomes convenient to affix a diskette directory listing directly on the pro-
tective jacket. This permits the user to scan the printed directory listing without having to
insert the diskette into the drive to obtain this information. Should you desire to print the
directory, place the diskette in drive O and enter the following commands:

LOAD “$0”,8 Loads the directory.
OPEN 4,4:CMD4 Opens device 4 (printer) and changes
the primary output device to 4.
LIST Prints the directory.
PRINT#4:CLOSE4 Returns output to the séreen and closes the file.

VALIDATE

The VALIDATE command traces through each block of data contained in all files on the
diskette. If this trace is successful, a new BAM is generated in the disk memory and written
to the diskette. Any blocks which have been allocated but are not associated with a file
name, as in the case of direct access files will be freed for use. This will not affect relative

- files created using the BASIC 4.0 DOPEN command.

In addition to reconstructing the BAM, VALIDATE deletes files from the directory that
were never properly closed. If a READ error is encountered during a VALIDATE, the
operation aborts and leaves the diskette in its previous state. If a VALIDATE error does
occur, you must re-initialize before proceeding.

The format of VALIDATE is:
PRINT#15,“VALIDATEd:”

Where: dr=drive number (0 or 1)

27

NOTE: You may abbreviate VALIDATE to V. If a drive number is not specified, the disk-
ette in the last drive used during the current session is verified.

Example: OPEN1,8,15
PRINT#1,V0”

or

PRINT#1,“VALIDATE 0”

COLLECT (BASIC 4.0 Direct Command)
The COLLECT command in BASIC 4.0 performs the same function as VALIDATE. Either
command will accomplish the following:

® Recreate a Block Availability Map according to valid data on disk

® Delete files from the directory which were never properly closed.
(OPENed but never CLOSEed)

The format of COLLECT is:
COLLECT Dx
Where: x=drive number (1 or Q)

Example1: COLLECT D1

Verifies drive 1
Example 2: COLLECT

Verifies drive 0
(drive defaults to 0)

DUPLICATE

The DUPLICATE command formats the destination diskette and transfers each block of in-
formation from the source diskette to the destination diskette, thus creating an exact dupli-
cate of the source diskette. Use this procedure for one method of creating a backup copy of
a diskette.

Due to the various formatting protocols used by DOS 1, DOS 2, and DOS 2.5, this com-

mand may NOT be used interchangeably when using diskettes prepared on different disk
drives. Use the following guide to avoid confusion:

DUPLICATE command may be used on—
® a 2040 or 3040 using diskettes formatted on a 2040 or 3040.
® a 4040 using diskettes formatted on a 4040.

DUPLICATE command may NOT be used on—

® 3 2040 or 3040 using diskettes formatted on a 4040.
® a 4040 using diskettes formatted on a 2040 or 3040.

To reproduce a diskette under these conditions, use the COPY ALL DISK pro-
gram found on the TEST/DEMO diskette which came with your disk drive.

28

The format of DUPLICATE is:
PRINT#1fn,“DUPLICATEddr=sdr”’

Where: ddr=is the destination diskette (either O or 1)
sdr=is the source diskette (either O or 1)

Do not reverse the order of the drive numbers. If you do, you will lose all data and there is
no way to recover it. Observe good practice and place a write protect tab on the diskette
containing the valuable information, This procedure will prevent overlaying good.
information,

Example: OPEN1,8,15
PRINT#1,“DUPLICATEQO=1"

or
PRINT#1,“D0=1"

NOTE: The letter D is a legal abbreviation for DUPLICATE command.

BACKUP (BASIC 4.0 Direct Command)
The BACKUP command in BASIC 4.0 performs the same function as DUPLICATE.
The format of BACKUP is:
BACKUP Dsdr TO Dddr.
Where: ddr=is the destination drive (either O or 1)
sdr=is the source drive (either O or 1)

Note that the format of BACKUP differs from DUPLICATE in that the order of the drives
is reversed.

Example: BACKUP D1 TC DO

This has exactly the same effect as the previous example given when discussing DUPLICATE
command. For a complete explanation of the BACKUP command, refer to the Commodore
BASIC 4.0 Reference Manual.

COPY

The COPY command allows you to copy files from one diskette to another, to create mul-
tiple copies (under different names) of files on the same diskette. This command can aiso be
used to concatenate data files on the 4040 or 8050. Up to four source files can be con-
catenated into the destination file. On the 4040 or 8050 all files from one drive may be
copied to a formatted diskette in the other drive. The COPY command may be abbreviated
with a C.

COPY disk command can be formatted three ways depending upon application:

To copy a single file: PRINT#1fn,“COPYddr:dfn=sdr:sfn”

29

[

R T S, Topmen <+ oy o o s e

30

or

PRINT#1fn, “Cddr:dfn=sdr:sfn”

To concatenate and copy: PRINT#1fn,“COPYddr:dfn=sdr:sfn,sdr:sfn . . .

or
PRINT#1fn, “Cddr:dfn=sdr:sfn,sdr:sfn . . .
To copy all files on a PRINT#1fn,“COPYddr=sdr”
diskette:
or

PRINT#1fn,”’Cddr=sdr”
Where: ddr=is the destination drive. The file is to be copied onto the diskette in this
drive. This may be the same or different from the source drive.
dfn=is the destination file name. This name may be either a new name or the

same as the old file name unless the ddr is the same as the sdr. If both files
are to exist on the same diskette, they must have different names.

In example 1, a file is copied from the diskette in drive 1 to the diskette in drive 0. In
example 2, files from both drives are concatenated into a file on drive 1. In example 3, all
files from drive O are copied to drive 1. An error message FILE EXISTS will be generated in
the disk unit if a file to be copied already exists on the destination drive (drive 1 in this
example).

Example 1: PRINT#1,“C1:ACCT1=0:ACCT”

A file is copied from the diskette in drive 1 to drive 0.

Example 2: PRINT#1,“C1:JDATA=1:ACCT1,0:ADATA,0:BDATA”

Files from both drives are concatenated into a file on drive 1. Note that file names should
be short, as the maximum length of a disk command string is 40 characters.

Example 3: PRINT#1,“C1=0”
All files from drive O are copied to drive 1.
Example 3 illustrates one way to upgrade from a 2040 or 3040 formatted diskette to a 4040

format: place a formatted diskette in drive 1 and the diskette to be upgraded in drive O and
copy all files from O onto 1.

COPY (BASIC 4.0 Direct Command)

The COPY direct command in BASIC 4.0 performs the same function as COPY disk com-
mand and its format is also dependent upon application.

Use this format to copy the contents of the entire disk:
COPY Dsdr TO‘ Dddr
Use this format to copy a single file:
COPY Dsdr,“stn” to Dddr,“dfn”
Where: sdr=the source diskette
ddr=.destination diskette

fn=file name

CONCAT (BASIC 4.0 Direct Command)
The CONCAT direct command in BASIC 4.0 permits the user to concatenate files.
The format of CONCAT is
CONCAT Dsdr,“sfn” TO Dddr,“dfn”

where the file named dfn on drive ddr will contain the contents of both dfn and sfn after
the concatenation. For example:

CONCAT DO0,“YOURFILE” TO D1,“MYFILE”

will result in MYFILE on drive 1 containing the data from the old MYFILE and from
YOURFILE. YOURFILE will remain unchanged.

NOTE: The concatenation feature of COPY disk command and CONCAT direct command
are valid only for DOS 2.

For further information regarding use of BASIC COPY and CONCAT commands, refer to
the Commodore BASIC 4.0 Reference Manual.

RENAME

The RENAME command renames an existing file. A file can not already exist with the file
name specified in the command or the FILE EXISTS error message will be generated.

The format of RENAME is:
PRINT#1fn,“RENAMEdr:nfn=ofn”
Where: dr=the disk drive on which the diskette is located.

nfn=the new name of the file.

31

32

ofn=the old name of the file.

Ifn=a logical file number. You assign this number arbitrarily and it may be any
whole number between 1 and 255.

NOTE: The letter R is a legal abbreviation for RENAME.

RENAME (BASIC 4.0 Direct Command)

The RENAME direct command in BASIC 4.0 performs the same function as RENAME disk
command.

The format is:
RENAME Ddr,“ofn” TO “nfn”

NOTE: Close any open files before using the RENAME command since the disk will not
execute this command on any active files.

For further information on the RENAME command, please refer to the Commodore BASIC
4.0 Reference Manual.

SCRATCH

The SCRATCH command erases unwanted files from the specified diskette and its directory.
You can erase one file, several files, or all the files on a diskette.

The format of SCRATCH is:
PRINT#1fn,“Sdr:fn,dr:fn . ..dr:fn”
Where: dr isthe disk drive to be searched.

alone means “last drive accessed”, with dr refers to the specified drive, where
not used means “both drives”.

fn is the name of the file to be erased.
To erase one file, enter the entire name of the file:
Example: PRINT#1,“S0:ACCT”
To erase several files with unrelated names, enter the entire name of each file to be deleted:
Example: PRINT#1,“S0:ACCT,0:CUSTOMER,0:INV”

To erase several files at one time where names have something in common, refer to the rules
in APPENDIX B concerning pattern matching.

You may erase all files on a diskette using pattern matching as in the following example:

Example: PRINT#1 “S0:*”

e g i £

1
;
3

RNy

SCRATCH (BASIC 4.0 Direct Command)

SCRATCH direct command in BASIC 4.0 performs the same function as SCRATCH disk
command,

The format is: SCRATCH Ddr,“fn”
Where: dr=drive number
fn=filename of file to be scratched
Pattern matching rules may be used with this command. As with the HEADER command,
there is a built-in safety feature that queries the user: ARE YOU SURE? A positive response

permits the file to be SCRATCHed while a negative response aborts the operation.

For a complete description of the SCRATCH direct command, please refer to your BASIC
4.0 reference manual.

NOTES

33

NOTES

34

—

Chapter

BASIC COMMANDS
FOR DATA HANDLING

BASIC COMMANDS ASSOCIATED WITH FLOPPY DISK DRIVES

The BASIC commands described in this chapter, allow the user to communicate with and
transfer data to and from the disk drive.

These commands are available for ALL versions of Commodore BASIC:

OPEN1fn,8,sa, dr:fn,t,r/w” VERIFY‘“dr:fn”,8
CLOSE1fn PRINT#1f
LOAD‘‘dr:fn”,8 GET#1fn
SAVE“dr:fn” 8 INPUT#

These commands are available ONLY in BASIC 4.0:

DOPEN#1fn,“fn” DSAVE“fn”
DCLOSE#1fn RECORD#1fn,R,B
DLOAD“fn”

Where: 1fn=logical file number (any number between 1 and 255) °
fn=file name supplied by user
x=dr=disk drive number (1 or 0): both Dx and dr default to 0
8=device number (8 for disk, 2 for second cassette, 4 for printer)
sa=secondary address
If=logical file

All upper-case characters shown in format are essential for the proper execution of a com-
mand and must be typed by user. These commands are entered via the keyboard using un-
shifted characters only, On the CBM Business Model they will appear in lower case.

BASIC 3.0 commands are upward compatible with BASIC 4.0 commands. Each command
will be defined along with a brief example to illustrate their use. As soon as your dual drive
floppy disk is attached to your computer and has passed the performance test, we encourage
you to try the examples and procedures.

35

36

SAVE and DSAVE (Writing a Program to a Diskette)

If a program is in computer memory, it can be moved to a diskette for storage. This is
accomplished with the SAVE (any Commodore BASIC) or DSAVE (BASIC 4.0) commands.

Any data transferred with the SAVE or DSAVE commands are automaticaly designated by
the DOS as a program (PRG) file. Both commands transfer PRG files from the computer’s
memory to the specified diskette. You must specify the drive number, the program name,
and the device number. The device number will default to device 1 which is the tape unit if
it is not specified.

The format of SAVE is:
SAVE‘“dr:fn”,dn
Where: dr=is the disk drive number. It must be 0 or 1.

fn=is any file name of 16 characters or less you wish to assign to the file to be
transferred to the diskette. Blanks are counted as characters.

dn=is the device number and it must be 8.

This following example illustrates creating a one line program, SAVEing it on the diskette in
drive 0 under the name TESTPROG, and VERIFYing that it is resident on disk.

Example: 10?“THIS IS A TEST”
SAVE“0:TESTPROG”,8
VERIFY*“0:TESTPROG”,8

The DSAVE command performs the same function as SAVE, but is valid only with a Com-
modore disk system and BASIC 4.0.

The format is:
DSAVE“fn”’Ddx

This command will save a file named “fn” on the floppy disk in drive O or 1. The file name,
“fn”’, may be any name of 16 characters or less.

LOAD and DLOAD (Reading a Program from a Diskette)

A program stored on diskette may be lcaded into memory using the LOAD (any Commo-
dore BASIC) or DLOAD (BASIC 4.0) commands.

The LOAD and DLOAD commands transfer PRG files from the specified diskette to the
computer’s memory. You must specify the drive number, the program name, and the device
number. The device number will default to unit 1 which is the cassette unit. The format of
LOAD is:
LOAD“dr:fn” dn

—

Where: dr=is the drive number from which you are loading data. It must be O or 1.

fn=is the file name previously specified in the SAVE command and/or stored in
the disk directory.

dn=is the device number and it must be 8.

The following example illustrates how a program is loaded from the diskette into the com-
puter memory, then executed. To do this example, first type NEW and depress RETURN
key to clear your computer’s memory so that you can see that it really works. Don’t con-
fuse the NEW command in BASIC with the NEW disk command used to format your disk.

Example 1: LOAD‘‘0:TESTPROG’’,8
READY.
RUN
THIS IS A TEST

The DLOAD command transfers performs the same function as LOAD, but is specifically
designed for a Commodore disk unit using BASIC 4.0. The device number will default to 8
if not specified. The drive number will default to O is not specified.

DLOAD“fn” ,Ddr

A successful LOAD or DLOAD closes all open files. Therefore you must give a new OPEN
command in order tocontinue communicating with the disk drive command and error
channel.

VERIFY

The format of VERIFY command is:
VERIFY‘dr:fn”,8

This command verifies that a file named ‘fn” stored on a floppy disk contains the same
information which is stored in the computer’s memory. This command is the same as the
VERIFY command used with the tape cassette. Once again, dr refers to the drive number,
either zero or one. Note that the format of this command specifies that the drive number be
placed before the filename. The 8 at the end of this command is the device number (8 for
disk, 2 for second tape cassette).

STEP 1: Write a short program and save it on a diskette in drive 1 under the name “test”
using the procedure described under the section on SAVE.

NOTE: It is important that the program in memory is not changed in any way
between the-save and verify operations.

STEP 2: Type: VERIFY “1.TEST” 8
Once verified, the screen displays:
VERIFY "1:TEZT". &

SERFCHIMG F
YERTFYIHG

(K]

FERDY.
|

37

: L

If a verify error occurs, reSAVE the program and verify it again.
VERIFY may also be used in the format:

VERIFY“*” 8

in order to perform verification of the last file saved without re-typing the filename. Con-
firm by following these steps:

STEP 1: Write a short program and save it.
STEP 2: Clear the screen.
STEP 3: Type: VERIFY “*” 8§

The VERIFY function will be performed comparing the last file saved to the content of
memory.

OPEN

This command sets up a correspondence between a logical file number and a file which exists
on disk. It also reserves the buffer space within the disk unit for operations on the file being

opened,

The format of the complete OPEN command is:
OPEN1fn,dn sa,*“dr:fn,ft mode”
Where: lfn=the logical file number
dn=the device number; in this case 8

sa=the secondary address. It may be any number from 2 to 14 and may be used
either for input or output as specified in mode. See note below

dr=the drive number: O or 1
fn=the name of the file.

ft=the file type. It may be SEQ (for sequential), USR (for user), REL (for rela-
tive) or PRG (for program).

mode describes how the channel is to be used. It may be either READ (R) or
WRITE (W).

NOTE: Secondary address 15 is the command and error channel and has special uses which
are discussed in subsequent chapters. Secondary addresses O and 1 are reserved by the
operating systems (BASIC and DOS) for LOADing and SAVEing programs.
Examples: OPEN2,8,2,“0:FILE]1,SEQ,WRITE”

OPEN3,8,9,“1:TESTDATA PRG,WRITE”

OPENS,8,8,“0:NUM,USR,READ”’

38

The contents of an existing file (on 4040 and 8050 only) may be replaced by preceding the
drive number with an at sign (@) in the OPEN command.

OPEN3,8,5,“@0:JDATA,USR,WRITE”
If the specified file does not exist, then normal OPENing procedures are executed.

You can also assign some of the OPEN parameters to a variable name as illustrated in these
examples:

Example 1: FL$=“0:FILEA,SEQ,READ”
OPEN1,8,14,FL$

Example 2: FL$=“0:FILEA”
OPEN1,8,14 FL$+“ SEQ,WRITE”

The preceding methods are convenient when it is necessary to open several channels to the
same file name.

DOPEN

The DOPEN command is available only to BASIC 4.0 users. When used with either a 4040
or 8050, DOPEN may be used to create relative files or sequential files of fixed length.

The format of DOPEN is:
DOPEN#1£n,“fn” Ddr,Lrl (,ONUdn) (,W)
Where: Ifn, fn, and dr are the same as defined for OPEN.
Lr] defines the record length as equal to rl
ONUdn specifies the device number equal to dn (with default device being 8)

W may be specified to mean write mode. If W is not specified for sequential
files, the file will be opened to read.

DOPEN is not available for the standard 2040 or 3040.

CLOSE
The CLOSE command closes a file opened by the OPEN command. Its format is:
CLOSE ln

Where: Ifn=the logical file number of a file opened by the OPEN command.

Always close a file after working with it. You are not allowed to have more than ten open
files in the computer and five in the disk drives, so it is prudent to make a habit of closing
files as soon as possible. This way you will always have the maximum number of files avail-
able for use.

39

4
A
3k

SR eox i

DCLOSE

The DCLOSE command is available only to BASIC 4.0 users. This command closes files
opened with the DOPEN command.

The format of DCLOSE is:
DCLOSE#lfn
Where: Ifn=the logical file number of the file to be closed.
The DCLOSE command may also be used in this format:
DCLOSE ONUdn
Where: dn=the device number of the disk unit (defaults to 8).
When used in this form, DCLOSE command closes all active disk files on the specified unit.
The following examples illustrate some applications of DCLOSE command:
Example 1: @ DCLOSE
Close all files currently OPEN.
Example 2: DCLOSE#5
Close only logical file 5.

CLOSING THE COMMAND CHANNEL

Closing the command channel closes all channels associated with the disk drive. No other
part of the logical file environment is affected. That is, the computer does not recognize
that the files have been closed.

The following example illustrates a situation in which several channels are closed down by a
single CLOSE command.

Example: The command channel is opened.

Data Channels are opened for writing.

FRINT#Z. " IMFOETRHT LATR"
FRINT#4. "MORE. DRTR"

AFEHZ. 4 A channel is opened to the printer by
mistake.

“FILE (FEN EREOET An error message is displayed on the
FEADY. screen.

Since there was an error, all logical files in the computer are closed, but the channels in the
disk drive are still open. To close the disk channels, type:

40

b1 G 00 R I

OPEN1,8,15
CLOSE1

Now all data channels in the disk drive are properly closed.

CLOSING THE DATA CHANNEL

The CLOSE command closes a file and the data or command channel associated with it.
Whenever you close a file opened with a write channel, the closing of that file writes the
final block of data to the disk and updates the disk directory. When you close a file opened
with a read channel, that channel is simply closed down.

NOTE: When a drive is initialized with INITIALIZE, NEW, DUPLICATE, or VALIDATE,
all channels associated with that drive are deleted. These commands should not be executed
when there are any files open since the files will be disrupted.

PRINT #

The PRINT# command transmits a disk command string to the drive.

The format of PRINT# is:
PRINT#fn,*“commandstring”
Where: ifn=a file previously opened using secondary address 15

“commandstring’’=disk handling or disk file handling commands. These disk commands
are discussed in detail in Chapter 3 of this manual.

PRINT# may also be used to transmit data to a previously-opened sequential or relative file.
A semicolon must be used as a terminator for each PRINT# statement when using BASIC
3.0 to avoid sending extraneous line feeds to the diskette. These characters are written to
the diskette by the BASIC PRINT# routine as part of the data terminator. It is important to
be aware of this face because the carriage return alone is seen as a terminator by the DOS,
The line feed is then stored in the file as the first character in the next record. To avoid this,
use the following format:

Example: PRINT#2,“JONESABC”’;CHR$(13);

The CHR$(13) is the carriage return necessary for the proper termination of the record on
the disk. When this record is input, the result will be JONESABC which is the desired result.

BASIC 4.0 users do not need to follow this procedure (though no harmful effects will result
from it). In BASIC 4.0, any file opened with lfn less than 128 will automatically suppress
the line feed. :

The following format may then be used:

PRINT#1fn,A$

This will produce the desired value of A$ for the record, and will not interfere with the next
record,

41

|
i

42

Several variables may be written to the disk at the same time.
The format:
PRINT#lfn,A$,B$,C$
will result in a single variable (A$+B$+C$) being retrieved by the input command.
The format:
PRINT#1fn, ASCHR$(13)B$CHR$(13)C$

will result in the variables A$, B$, and C$ being separated by carriage returns, and they may
then be input as separate variables.

INPUT #

The INPUT# command is used to transfer information from an IEEE device such as the disk
drive into computer memory. INPUT# is valid only when used in a program and only when
referencing a logical file that has been OPENed for input.
The format for INPUT# is:
INPUT#Ifn,A$ or INPUT#lfn,A
Where: Ifn=a file previously opened using secondary address 15
A$=a string variable which wiil contain the data transferred.
A=a numeric variable which will contain the data transferred.
INPUT# may also be used to transfer several strings of data at one time:
INPUT#fn,A$,B$,C$
Where: AS$, B$, C$ will contain the data transferred from the disk.
In this format, the data strings must have been separated by carriage returns (CHR$(13))

at the time they were written to the disk in order to be retrieved separately. No single string
may contain more than 80 characters if it is to be INPUT.

Example 1:
20 INPUT#2,A
II;putt the next data item which must be in numeric form and assign the value
to variable A.

Example 2:

10 INPUT#8,A$

Input the next data item as a string and assign it to variable AS$.

TS 5 o i

Example 3:
60 INPUT#7,B,C$

Input the next two data items and assign the first to numeric variable B and
the second to string variable C$.

For strings longer than 80 characters, the GET# command must be used.

GET #

The GET# command is used to transfer individual bytes of information from an IEEE
device such as the disk drive into computer memory. GET# is valid only when used in a pro-
gram and only when referencing a file that has been OPENed.

The format of GET# is:
GET#lfn,A$
Where: 1fn=a file previously opened using secondary address 15
AS$=a string variable which will contain the data transferred.

GET# may also be used to transfer several bytes of information, which is useful for retriev-
ing strings which have been written to the disk in a format which is unacceptable for the
INPUT command (strings longer than 80 characters).

For example: 10 AA$=“”
20 FOR I=1 TO 254
30 GET#1fn,A$
40 AAS=AAS$+AS
50 NEXT

is a program segment which would result in a string of length 254 being transferred from the
disk (logical file number lfn) to the computer memory and stored in the variable AAS$.

RECORD #

The RECORD# command is used prior to a PRINT#, INPUT#, or GET# in order to posi-
tion the file pointer to the desired record (and byte) of a relative file. For example, if record
pointer is set beyond the last record and PRINT# is used, the appropriate number of records
are generated to expand the file to the desired record.

RECORD# is available only to users equipped with BASIC 4.0. The format is:
RECORD#lfn b
Where: Ifn=a logical file number of a file previously op\ened with the DOPEN command
r=the desired record number. 4 may be either a variable name or value, how-
ever if r is a variable name, it must appear enclosed in parentheses.
0<=r<=65535
b=the byte position desired within the record. Byte positioning is optional.

1<=h<=254
43

44

The following example illustrates how RECORD command is used with INPUT#:
Example: 10 RECORD#1,120
Using the RECORD command to select the record.
20 INPUT#1,A$
Input the next data item as a string and assign it to variable A$.

A detailed example of the usage of the RECORD command for relative file manipulation is
found in Chapter 6.

QUICKLOAD FEATURE (BASIC 4.0)

This command feature is valid with DOS 2 and BASIC 4.0, and either a 4040 or 8050. (This
command will also function properly with a retrofitted 2040.)

This command loads the first file on the disk in drive 0 into memory. To ensure that the
first program on the diskette is accessed, the command must be the first disk command
given after a cold start.

STEP 1: Turn the computer OFF, then ON.

STEP 2: Make sure the disk containing a program as the first file is in drive O and that the
drive door is closed.

STEP 3: Simultaneously press the SHIFT and RUN/STOP keys.

The computer will initialize the disk in drive 0, search for the first program on that disk,
and load it.

% commodore hazio 4.0 s

When using this feature the computer will automatically execute the DLOAD and RUN
commands and it is not necessary to enter either command.

MOVING A TAPE PROGRAM TO DISK

This example illustrates a session with the computer, a tape cassette and a disk drive. The
purpose is to copy a cassette program to a diskette. The program is then read from the
diskette to the computer’s memory and printed. It is assumed that the BASIC program was
previously stored on the cassette.

Example:

LOAL DEMO" Load the file from the cassette tape to the
) computer’s memory.

FEEZS FLAY OH TRFE #1

i

SERFCHIMG FOR DEMD
FOUMD DEMD
LOADIMG

FEADY.

SAVE"L: DEMOY. S Create a program file containing the program
YERIFY"1:DEMO" . & on diskette.
EERDY. -

HE Erase everything from memory. (The NEW
command in BASIC will clear memory; the
NEW disk command will format a disk.)

LOAD" 1 DEMO" . & Load the program back into the computer’s
SERRCHIMG FOR 1 DEMG memory.

LOADTHG

FERDY.

RIIH Run the program to verify it has been loaded.

45

NOTES

T

46

Chapter

ADVANCED
DISK PROGRAMMING

This chapter provides detailed information about DOS structure and disk utility commands.
The utility commands provide the programmer with low-level functions that may be used
for special applications such as special disk handling routines and random access techniques.

COMMODORE DISK OPERATING SYSTEM (DOS)

The DQS file interface controller is responsible for managing all information between the
disk controller and the IEEE-488 bus. Most disk I/O is performed on a pipelined basis, re-
sulting in a faster response to a requested operation.

The file system is organized by channels which are opened with the BASIC CPEN state-
ment. When executed with the OPEN statement, the DOS assigns a workspace to each
channel and allocates either one or two disk I/O buffer areas. If either the workspace or the
buffer is not available, a NO CHANNEL error is generated. The DOS also uses the channel
structure to search the directory, and to delete and copy files.

The common memory between the disk controller and the file interface controller is used as
256-byte buffer areas. Three of the sixteen buffers are used by the DOS for the Block
Availability Maps (BAM), variable space, command channel I/0, and disk controller’s job
queue.

The job queue is the vital link between the two controllers. Jobs are initiated on the file
side by providing the disk controller with sector header and type of operation information.
The disk controller seeks the optimum job and attempts execution. An error condition is
then returned in place of the job command. If the job is unsuccessful, the file side re-enters
the job a given number of times, depending upon the operation, before generating an error
message.

The secondary address given in the OPEN statement is used by DOS as the channel number.
The number the user assigns to a channel is only a reference number that is used to access
the work areas, and is not related to the DOS ordering of channels. The LOAD snd SAVE
statements transmit secondary addresses of 0 and 1, respectively. The DOS automatically

47

48

interprets these secondary addresses as LOAD and SAVE functions. Unless these functions
are desired when opening files, avoid secondary addresses of 0 and 1. The remaining num-
bers, 2 through 14, may be used as secondary addresses to open up to five channels for
data.

DISK UTILITY COMMAND SET

The disk utility command set consists of the following commands:

Commands Abbreviations General Format
BLOCK-READ BR “B-R:"ch,dr t s
BLOCK-WRITE B-W “B-W:”ch,dr t,s
BLOCK-EXECUTE B-E “B-E:”ch,dr t,s
BUFFER-POINTER B-P “B-P:”’ch,p
BLOCK-ALLOCATE B-A “B-A:"drts
BLOCK-FREE B-F “B-F:i"drts
memory-write M-W | “M-W'’adl/adh/nc/data
memory-read M-R “M-R’’adl/adh
memory-execute M-E “M-E”’adl/adh
USER U “Ui:parms”

Where: ch=the channel number in DOS: identical to the secondary address in the

associated OPEN statement.
dr=the drive number: Qor 1

t=the track number: 0 thru 77. For each track number, the sector ranges
for the 2040, 3040, 4040, and 8050 are shown in Appendix C.

p=the pointer position for the buffer pointer.
adl=the low byte of the address*.
adh=the high byte of the address*.
nc=the number of characters: 1 through 34%*,
data=the actual data in hexidecimal. This is transmitted by using the CHR$
function, i.e. CHR$(1) would send the binary equivalent of hexidecimal
01, (decimal 1).
i=the index to the User Table.

parms=the parameters associated with the U command (optional).

The values used in conjunction with the memory commands exist in the 2040, 3040, and
4040 as hexidecimal values and must be transmitted as CHR$(n), where n is the decimal
equivalent of the desired hexidecimal value.

NOTE: If using variables the format must have only the command in quotes. For example:

“B-R:”ch,dr,t,s correct .
“B-R:ch,dr,ts” incorrect
To avoid confusion, it is good practice to use this format when using variables or constants.
As implied in the preceding format, these commands may be abbreviated to the first charac-
ter of each of the key words. Abbreviations only are accepted for those commands shown in
lower case. The parameters associated with each command are searched for starting at a
colon (:), or in the fourth character position if a colon is not present. The example follow-
ing shows four ways that the same block-read command may be given.
NOTE: If using a 4040 initialize the disk before the buffer read or write.
Examples: “BLOCK-READ:”2,1,4,0
“B-R"”2,1,4,0
“B-R’2;1;4;0
“B-READ:72;1;4;0

Parameters following the key words within quotation marks may be separated by any com-
bination of the following characters:

Character Name Keybéard Representation
Skip <cursor right>
Space Space bar
Comma

The use of these characters permits sending both ASCII strings and integers.

Parameters not within the confines of quotation marks should be separated by semi-
colons (;).

In the following discussions, a PRINT# is assumed in all examples.

BLOCK-READ

This diskette utility command provides direct access to any block on a diskette in either
disk drive. Used in conjunction with other block commands, a random access file system
may be created through BASIC. This command finds the character pointer in the O-position
of the block. When a character in this position is accessed with GET# or INPUT#, an End-
or-Identify (EOI) is sent. This terminates an INPUT# and sets the Status Word (ST) to 64 in
the computer.

49

i
7

50

The format “B-R:”’ch;dr;t;s is illustrated in the following example.
Example: “B-R:75;1;18:0

Reads the block from drive 1, track 18, sector 0 into channel 5 buffer area.
After using BLOCK READ to transfer the data to the buffer, the data may be transferred to
memory by INPUT# or GET# from the logical file opened to that disk channel (i.e., using

that secondary address).

The Ul command described under USER is similar to the BLOCK-READ command.

BLOCK-WRITE

When this command is initiated, the current buffer pointer is used as the last character
pointer and is placed in the 0 position of the new buffer, The buffer is then written to the
indicated block on the diskette and the buffer pointer is left in position 1.
The format ““B-W:"’ch;dr;t;s is illustrated in the following example.
Example: “B-W:7;0;35;10

Writes channel 7 buffer to the block on drive 0, track 35, sector 10:

BLOCK-WRITE is not available with DOS 2. This includes the 4040 and all 2040/3040
retrofits. The BLOCK-WRITE command is replaced by the U2 command for the 4040.

BLOCK-EXECUTE

This command allows part of the DOS or user designed routines to reside on disk and be
loaded into disk drive memory and executed. B-E is really a B-R with an addition. The File
Interface Controller begins execution of the contents after the block is read into a buffer.
Execution must be terminated with a return from the subroutine (RTS) instruction. Future
system extensions or user-created functions may implement this command.

The format “B-E:”’ch;dr;t;s is illustrated in the following example.
Example: “B-E:”6;1;1;10

Reads a block from drive 1, track 1, sector 10 into channel 6 buffer and exe-
cutes its contents beginning at position O in the buffer:

BUFFER-POINTER

This command changes the pointer associated with the given channel to a new value. This is
useful when accessing particular fields of a record in a block or, if the block is divided into
records, individual records may be set for transmitting or receiving data.

The format “B-P:”ch,p is illustrated in the following example.
Example: “B-P:7”2;1

Sets channel 2 pointer to the beginning of the data area in the direct access
buffer:

BLOCK-ALLOCATE

The appropriate BAM is updated in the DOS memory to reflect the indicated block as
allocated (used). In future operations, the DOS skips over the allocated block when saving
programs or writing sequential files. The updated BAM is written to diskette upon the
closure of a write file or the closure of a direct access channel.

If the block requested has been previously allocated, the error channel indicates the next
available block (increasing track and sector numbers) with a NO BLOCK error. If there are
no blocks available that are greater in number than the one requested, zeroes are displayed
as track and sector parameters.

The format “B-A:”dr;t;s is illustrated in the following example.
Example: “B-A:"1;10;0

Requests that block (sector) 0 of track 10 be flagged as allocated on the diskette
in drive 1.

NOTE: The error channel should always be check when using BLOCK ALLOCATE, so that
if the block is already allocated, it will not be overwritten. If the block is allocated, the error
message will also indi'r_:ate the next available block.

Example: INPUT#15,EN,EM$,ET,ES

Reads the next track and sector, respectively, into ET and ES, assuming that
Ifn=15 has been previously OPENed to the disk error channel.

MEMORY

All three MEMORY commands are byte-oriented so that the user may utilize machine
language programs. BASIC statements may be used to access information through the
MEMORY commands by using the CHR$ function. The system accepts only M-R, M-W, and
M-E: neither verbose spelling or the use of the colon (:) is permitted.

Memory-Write
This command provides direct access to the DOS memory. Special routines may be down-
loaded to the disk drive through this command and then executed using the MEMORY-
EXECUTE command or one of the USER (U) commands. Up to 34 bytes may be deposited
with each use of the command. The low byte of the address must precede the high byte of
the address.
The format “M-W: ”adl/adh/nc/data is illusﬁated in the following example.
Example: “M-W:”CHR$(00)CHR$(18)CHR$(4)CHR$(32)CHR$(0)CHR$(17)CHR$(96)

Writes four bytes to buffer 2 ($1200 or decimal 4608):

51

i S N

e R

oo

T e N A B K R At o el M M RS RS 35 55555

Memory-Read

The byte pointed to by the address in the command string may be accessed with this com-
mand. Variables from the DOS or the contents of the buffers may also be read with this
command. The M-R command changes the contents of the error channel since it is used for
transmitting information to the computer. The next GET# from the error channel
(secondary address 15) transmits the byte. An INPUT# should not be executed from the
error channel after a MEMORY-READ command until a DOS command other than one of
the MEMORY commands is executed.

The format ‘“M-R:”adl/adh is illustrated in the following example.

Example: “M-R’CHR$(128);CHR$(0)

Accesses the byte located at ($0080 or decimal 128):

Memory-Execute

Subroutines in the DOS memory may be executed with this command. To return to the
DOS, terminate the subroutine with RTS ($60).

The format “M-E:"adl/adh is illustrated in the following example.
Example: “M-E’CHR$(128);CHR$(49)

Requests the execution of code beginning at $3180.

USER

This command provides a link to 6502 machine code according to a jump table pointed to
by the special USER pointer. Refer to Table 5. The second character in this command is

used as an index to the table. The ASCII character O through 9 or A through 0 may be used.
Zero sets the USER pointer to a standard jump table that contains links to special routines.

The special USER commands Ul (or UA) and U2 (or UB) can be used to replace the
BLOCK-READ and the BLOCK-WRITE commands.

The format of Ul is:
“Ul:”ch;dr;t;s

Ui forces the character count (buffer pointer) to 255 and reads an entire block into
memory. This allows complete access to all bytes in the block.

The format of U2 is:

“U2:7ch;dr;t;s
U2 writes a buffer to a block on the disk without changing the contents of position 0 as
B-W does. This is useful when a block is to be read in (with B-R) and updated (B-P to the
field and PRINT#), then written back to diskette with U2.

Refer to the random access example in Chapter 6 for an application of the Ul and U2
commands.

Table 5. Standard Jump Table

ALTERNATE
USER USER

DESIGNATION DESIGNATION FUNCTION
U1l UA BLOCK-READ replacement
U2 UB BLOCK-WRITE replacement

2040/3040 4040 8050

U3 uc jump to $1300 $1300 $1300
U4 UD jump to $1303 $1303 $1303
Ub UE jump to $1306 $1306 $1306
U6 UF jump to $D008 $1309 $1309
U7 UG jump to $D00OB $130C $130C
U8 UH jump to $DOOE $130F $130F
U9 Ul jump to $DOD5 $10F0 $10F0
U: Ud power up vector

U3 thru U9 commands are user-defined. The locations jumped to are located in the buffer
areas of RAM and routines may be written to reside there and downloaded using the M-W

command. Locations D008, DOOB, DOOE, and DOD5 are located in the expansion ROM slot
in the 2040/3040 and USER commands may be used to access a ROM or EPROM located in

that position. Location 10F0 is the location of the NMI vector in the 4040 and 8050.

93

Table 6. Block Distribution By Track

2040, 3040 Block or
Track number Sector Range Total
1to 17 0to 20 21
18 to 24 0to 19 20
25 to 30 0to 17 18
31 to 35 0to 16 17
4040 Block or
Track number Sector Range Total
1to17 0 to 20 21
18 to 24 0 to 18 19
25 to 30 0to 17 18
31 tc 35 0to 16 17
8050 Block or
Track number Sector Range Total
1to 39 0 to 28 29
40 to 53 0 to 26 27
54 to 64 0to 24 25
65to 77 0 to 22 23

Any block on a diskette may be examined by using the program DISPLAY T&S, provided
on the TEST/DEMO diskette.

Tables 7 through 12 will assist the user in interpreting information obtained using the DIS-
PLAY T&S program.

54

R N A

Table 7. 2040, 3040 BAM FORMAT

Track 18, Sector 0.

BYTE CONTENTS DEFINITION
0,1 18,01 Track and sector of first directory block.
2 1 Indicates version 1 format.
3 0 Null flag for future DOS use.
4-143 *Bit map of available blocks for tracks 1-35.

*]=available block
O=block not available
(each bit represents one block)

Table 8. 2040, 3040 DIRECTORY HEADER

Track 18, Sector 0.

BYTE CONTENTS DEFINITION
144-161 Disk name padded with shifted spaces.
162-163 Disk ID.

164-170 160 Shifted spaces.
171-255 0 Nulls, not used.

Note: ASCII characters may appear in locations 180 thru 191 on some diskettes.

55

i

56

Table 9. 4040 BAM FORMAT

Track 18, Sector 0.

BYTE CONTENTS DEFINITION
0,1 18,01 Track and sector of first directory block.
2 65 ASCII character A indicating 4040 format.
3 0 Null flag for future DOS use.
4-143 Bit map of available blocks for tracks 1-35.

*]=available block
0O=block not available
{each bit represents one block)

Table 10. 4040 DIRECTORY HEADER

Track 18, Sector 0.

BYTE CONTENTS DEFINITION
144-161 Disk name padded with shifted spaces.
162-163 Disk ID.
164 160 Shifted space.
165,166 50,65 ASCII representation for 2A which is DOS version and
format type.
166-167 160 Shifted spaces.
171-255 0 Nulls, not used.

‘Note: ASCII characters may appear in locations 180 thru 191 on some diskettes.

T e G YRR

SRR

Table 11. 8050 DIRECTORY HEADER BLOCK

Track 39, Sector 0.

BYTE CONTENTS DEFINITION
0,1 38,0 Track and sector of first BAM block.
2 67 ASCII character C indicating 8050 format.
3 0 Null flag for future DOS use.
4,5 0 Unused.
6-21 Disk name padded with shifted spaces.
22,23 160 Shifted spaces.
24,25 Disk ID.
26 160 Shifted space.
27,28 50,67 ASCII representation for 2C which is DOS version and
format type.
29-32 160 Shifted spaces.
33-255 0 Nulls, not used.

57

58

Table 12. 8050 BAM FORMAT

First BAM block: Track 38, Sector 0.

BYTE CONTENTS DEFINITION
0,1 38,3 Track and sector of second BAM block.
2 67 ASCII character C indicating 8050 format.
3 0 Null flag for future DOS use.
4 1 . Lowest track number represented in this BAM block.
5 51 Highest track number +1 in this BAM block.
6 Number of blocks unused on track 1.
7-10 Bit map representation of available blocks on track 1.
11-255 *BAM for tracks 2-50, 5 bytes per track.

Second BAM

block: Track 38, Sector 3.

BYTE CONTENTS DEFINITION
0,1 39,1 Track and sector of first directory block.
2 67 ASCII character C indicating 8050 format.
3 0 Null flag for future DOS use.
4 1 Lowest track number represented this BAM block.
5 51 Highest track number +1 in this BAM block.
6 Number of blocks unused on track 51.
7-10 Bit map representation of available blocks on track 51.
11-140 *BAM for tracks 52-77, 5 bytes per track.
141-255 Unused.

*STRUCTURE OF BAM ENTRY FOR A TRACK

BYTE DEFINITION
0 number of available sectors for track
1 bit map sectors 0-7
2 bit map sectors 8-15 1=available
3 bit map sectors 16—23 O=not available
4 bit map sectors 24-31

Note: “BLOCKS FREE” may appear in locations 180 thru 191 on some diskettes.

8050 DISK ZONES

The 8050 disk format uses a variable number of sectors per track according to four density
zones. The BAM is made up of two blocks (see BAM structure information). The first block
represents tracks 1 thru 50 and the second, tracks 51 thru 77.

TOTAL SECTORS ZONE BAM AREA

TRACK NUMBER OF
RANGE | SECTORS/TRACK
1-39 29
40-50 27
. 51_53 27
54-64 25
65-77 23

1131 1
297 2

.......................................

................

- 29 DIRECTORY
- 2BAM

2052 BLOCKS AVAILABLE

When the DOS requires access to a BAM block not currently in memory, it must be read
from the diskette. Before reading in the other block, the DOS checks to see if changes have
occurred to the current block. If changes have been made, the current block is written to
the diskette. The other BAM block is then read into the DOS memory.

59

Table 13. DIRECTORY FORMAT

i Track 18, Sector 1 for 4040
| Track 39, Sector 1 for 8050

BYTE DEFINITION
0,1 Track and sector of next directory block.
2-31 *File entry 1
34-63 *File entry 2
66-95 *File entry 3
98-127 *File entry 4
130-159 *File entry 5
162-191 *File entry 6
194-223 *File entry 7
226-255 *File entry 8
*STRUCTURE OF SINGLE DIRECTORY ENTRY
BYTE CONTENTS DEFINITION
0 128+type File type OR’ed with $80 to indicate properly closed file.
TYPES: 0=DELeted
1 = SEQential
2 = PROGram
3 =USER
4 = RELative
1,2 Track and sector of 1st data block.
3-18 File name padded with shifted spaces.
19,20 Relative file only: track and sector for first side sector
block.
21 Relative file only: Record size.
22-25 Unused.
26,27 Track and sector of replacement file when OPEN@ is in
effect.
28,29 Number of blocks in file: low byte, high byte.

60

Table 14. SEQUENTIAL FORMAT

BYTE DEFINITION
0,1 Track and sector of next sequential data block.
2-256 254 bytes of data with carriage returns as record terminators.
Table 15. PROGRAM FILE FORMAT
BYTE DEFINITION
0,1 Track and sector of next block in program file.
2-256 254 bytes of program info stored in CBM memory format (with key words

tokenized). End of file is marked by three zero bytes.

61

NOTE:
Not to scale

POINTERS TO LINK N
/ TOGETHER ALL BLOCKS AN
WITHIN A FILE

4 |

Q -

[
YNC D2 | TRACK | sSECTOR | CHECK-{ g ap & 254 BYTES | CHECK- | GAP
SYNC | 08 | ID1| ID2 SECT HEck 1|s¥YNC| o7 : E OF DATA SUM 2

Figure 4 — 2040, 3040, 4040 Format: Expanded View of a Single Sector

Figure 4 illustrates an expanded view of a single sector on a diskette formatted for the 2040.
In addition to other information, each sector contains a data block consisting of 256 stored
characters. Blocks within the same file are linked together by means of a two character
block pointer. By pointing to the location of the next data block, block pointers enable the
system to retrieve data from non-contiguous blocks. Retrieving the first data block within a
file triggers a search for the next data block which, in turn, utilizes block pointers to locate
related blocks until the entire file is assembled and made available for display. All PRG,
SEQ, and USR files utilize this format.

A data block is addressed by track and sector. A 2040 diskette contains 35 tracks (or rings)
numbered 1 to 35 while an 8050 diskette contains 77 tracks numbered 1 to 77. The number
of sectors per track will vary (as illustrated in Table 6) due to differences in track circum-
ference and recording frequency.

The 2040 maintains a system file on track 18 which contains the BAM, diskette name, ID,
and file directory. The BAM, resident in the first 128 bytes of sector 0, monitors available
and occupied storage locations on diskette. The last 128 bytes of sector 0 are used to store
the diskette name and ID. The file directory begins on the next sector, sector 1.

62

NOTE:
Not to scale

POINTERS TO LINK N
/ TOGETHER ALL BLOCKS AN
WITHIN A FILE

AN
l—
|

254 BYTES CHECK- GAP

SYNC CHECK-
08 (ID1| ID2 | TRACK| SECTOR GAP 1| SYNC| 07 OF DATA SUM 2

SUM

BYTE 0
BYTE 1

Figure 5 — 8050 Format: Expanded View of a Single Sector

Figure 5 illustrates an expanded view of a single sector on a diskette formatted for the 8050.
In addition to other information, each sector contains a data block consisting of 256 stored
characters. Blocks within the same file are linked together by means of a two character
block pointer. By pointing to the location of the next data block, block pointers enable the
system to retrieve data from non-contiguous blocks. Retrieving the first data block within a
file triggers a search for the next data block which, in turn, utilizes block pointers to locate
related blocks until the entire file is assembled and made available for display. All PRG,
SEQ, and USR files utilize this format.

A data block is addressed by track and sector. A 2040 diskette contains 35 tracks (or rings)
numbered 1 to 35 while an 8050 diskette contains 77 tracks numbered 1 to 77. The number
of sectors per track will vary (as illustrated in Table 6) due to differences in track circum-
ference and recording frequency.

The 8050 maintains system files on tracks 38 and 39 which contain the BAM, disketite
name, ID, and file directory. The BAM, resident in the first 255 bytes of sectors 0 and 3 of
track 38, monitors available and occupied storage locations on diskette. The file directory
header block, beginning on sector O of track 39, contains the diskette name and ID within
the first 30 bytes.

63

NOTES

<
=

Chapter

ADVANCED
FILE HANDLING

In the preceding chapters, you learned how to manipulate files on the disk, and were shown
the format of commands used to create and update files. In this chapter, you will utilize
these skills in a file handling application using random or relative access.

SPECIAL OPEN AND CLOSE
STATEMENTS FOR DIRECT ACCESS

The BASIC statements (after initializing the disk):
OPEN2,8.4,“#”
or
OPEN2,8,4,“#12”

open a channel to one buffer, to be used with the block commands. In the first example,
the first available buffer is allocated to channel 4. The second example is an attempt to allo-
cate buffer 12 to the channel. If the buffers are not available, a NO CHANNELS error con-
dition is generated. The explicit buffer allocation can be used to reserve a buffer for
position dependent code as in the case of an EXECUTE command.

Execute a GET# statement to find the number of the allocated buffer. The byte trans-
mitted is the buffer number. A buffer number may only be obtained PRIOR TO any write
or read operations to that buffer.

The CLOSE statement clears the OPENed channel and writes the BAM to the diskette that
was last used by that channel. To avoid confusion, limit yourself to accessing one drive with
any direct access channel.

65

66

RANDOM ACCESS EXAMPLE

Since the BLOCK-ALLOCATE command returns the next available diskette block through
the error channel, it can be used in the allocation of records. This feature allows creating a
random file without being concerned with the actual physical structure of the diskette.
However, the allocated blocks must first be recorded in a sequential or user file in order to
be referenced by the BASIC program.

The following random file example demonstrates the use of block access commands. Notice
that the Ul and U2 commands are used. These commands are used since more than one
record is stored in a block, and it is necessary to manage end-of-record pointers in BASIC.
A smaller application might take advantage of the B-R and B-W commands.

Chapter 9 contains a complete listing of the random access program entitled “Random
1.00”. The example program is built upon a relative record scheme and provides single
record access through BASIC programming. Most of the programming below line 2000 is
relative record access. The field accessing routines left-justify binary and alpha fields, and
right-justify numeric fields.

In an actual situation, the program should generate error messages to the operator, or auto-
matically take corrective action such as rounding numbers to fit a field. It would also be
possible to add data sorts and searches as well as key fields to the program. Record size,
including field markers, must be less than 254 characters. Field size is restricted to 80
characters because of the restrictions of the BASIC INPUT# statement. Longer fields could
be used if the BASIC program were modified to use GET# for retrieval but that procedure
would be much slower.

Two sequential files are used to support the random access file in this example. Each file
bears the name of the file name given in the CREATE file code (lines 1100 to 1180) plus a
six-character extension. Since primary file names are ten or less characters, the file names
are padded with spaces. The two files are named FILENAME .DESCR and FILENAME
KEYO01.

The descriptor (.DESC) contains information about record structure and location. The
primary key file (.KEYO01) contains the first field of each record and the relative record
number. This example allows the random records to reside on a separate diskette from the
sequential support files, thereby providing added room for random data. The OPEN code
(lines 1200 to 1275) requires the disk ID of the random file disk for comparison.

Note that since no file name is assigned to the random blocks, a VALIDATE should never
be performed on the disk containing the random data. In order to backup the disk, a
BACKUP or DUPLICATE must be performed, since the DOS is unable to COPY without a
filename,

To Create A File
STEP 1: Insert the TEST/DEMO disk in drive O.

STEP 2: Type: OPEN15,8,15 and press RETURN
Opens the command channel and initializes the diskette.

STEP 3: Type: LOAD*“0:RANDOM 1.00”,8 and press RETURN
This command loads the random access program.

STEP 4:
STEP 5:

STEP 6:

STEP T:

STEP 8:

STEP 9:

STEP 10:

STEP 11:

STEP 12:

STEP 13:

Insert a blank diskette into drive 1.
Type: PRINT#15,“N1:MAILING LIST” and press RETURN

Type: RUN and press RETURN
The screen displays: “DO YOU WISH TO CREATE A FILE”?

Type: Y and press RETURN
The screen displays: “RANDOM FILE NAME’*?

Type the file name: PHONE LIST and press RETURN
The screen displays: “KEY FILE DRIVE NUMBER’?

Type: 1 and press RETURN
The screen displays: “RANDOM FILE NUMBER’*?

Type: 1 and press RETURN
The screen displays: “ENTER ID OF RANDOM DISK”?

Type: CS and press RETURN
The screen displays: “NUMBER OF RECORDS”?

Type: 10 and press RETURN

For this example, ten was entered since this is the MAXIMUM number of
records the file can contain. If less records are needed, specify a number less
than ten.

The screen displays: “NUMBER OF FIELDS PER RECORD”?
Type: 4 and press RETURN

This is the number of ‘items’ each field contains.

The screen displays: “INPUT FIELD NAME, FIELD SIZE, FIELD TYPE”.

TYPES: 0=BINARY, 1=NUMERIC, 2=ALPHA

FIELD 1?” enter: NAME, 20,2 and press RETURN

FIELD 2?” enter: PHONE,15,2 and press RETURN

FIELD 3?” enter: ADDRESS,40,2 and press RETURN

FIELD 47?” enter: COMMENTS,40,2 and press RETURN

STEP 1:

STEP 2:

To Add A Record

The screen displays: “WHOSE RECORD DO YOU WISH TO SEE?
Press RETURN.
The screen displays: “k*x*xk ADD RECORD****”

NAME”?

Type: COMMODORE and press RETURN
The screen displays: “PHONE"?

67

e

\

-y,

PR

STEP 3: Type: 727-1130 and press RETURN
The screen displays: “ADDRESS”?
STEP 4: Type: 3330 SCOTT BLVD SANTA CLARA CA. 95051 and press RETURN
The screen displays: “COMMENTS*?
STEP 5: Type: MANUFACTURES MICROCOMPUTERS and press RETURN
The screen displays: “WHOSE RECORD DO YOU WISH TO SEE™?
Press RETURN
The screen displays: “*¥x*% ADD RECORD****”
NAME**? Enter the desired name. For example: SMITH and press
RETURN
PHONE™? Enter the phone number: 999-356-1012 and press RETURN
ADDRESS™? Enter the address: 247 MASSOL DR LOS GATOS CA. 95030
and press RETURN
COMMENTS”? Enter a comment, For example: MANUFACTURES
PERIPHERALS and press RETURN
STEP 6: The screen displays: “WHOSE RECORD DO YOU WISH TO SEE”?
Press RETURN
The screen displays: c“HFkkk ADD RECORD ¥ *%”
NAME”? Enter the desired name. For example: JONES and press
RETURN
PHONE”? Enter the phone number: 999-268-1795 and press RETURN
ADDRESS”? Enter the address: 4086 AMBER WAY SAN JOSE CA. 95117
and press RETURN
COMMENTS”? Enter a comment. For example: MANUFACTURES
COMPUTERS and press RETURN
To See A Record
The computer displays: “WHOSE RECORD DO YOU WISH TO SEE’*?

Enter: COMMODORE and press RETURN

To Change A Record

After displaying the record, the screen displays: “ANY MODS”?

STEP 1:

Type: YES and press RETURN.
The screen displays: “WHICH FIELD”’?

Enter the number of the field you wish to change.

STEP 2: Type: 4 and press RETURN.

The computer displays that field: US HEADQUARTERS
STEP 3: Press RETURN.

The screen display asks if there are: “ANY MODS”.

STEP 4: If the record is correct, type: NO and press RETURN

Getting The Directory of Listings
The screen displays: “WHOSE RECORD DO YOU WISH TO SEE™*?
Type: /DIR and press RETURN

The computer displays the directory.

Ending The Program
The computer displays: “WHOSE RECORD DO YOU WISH TO SEE™?

Type: // and press RETURN. The program ends.

RELATIVE FILES 4040, 8050

Direct access of relative files is a method that allows the programmer to position to any
record on the disk relative to the beginning of that file. Compare this method to the stan-
dard procedure of having to search each track and sector for the desired information and it
becomes apparent that such a relative handling method would result in a great reduction in
the amount of time required to find a specific record stored on disk. This reduction in the
amount of time required to locate and fetch a file through the application of relative file
handling techniques frees the user from the major objection to using sequential disk files:
excessive “look up” time.

Both DOS 2 and 2.5 (4040 and 8050) are capable of handling relative files and should signi-
ficantly reduce the amount of time spent retrieving disk files.

The two main components of a relative file are the side sector chain of blocks and the data
block chain. Both are linked together through forward pointers similar to those used in a
sequential file. Record sizes, while fixed in length, may range from one to 254 bytes. The
number of records is limited to the capacity of the disk but for practical purposes should
not exceed 65,535.

The side sectors do not contain record information, but do contain locations of the data
blocks. The record size dictates where the pointer is placed when a record number is refer-
enced because the record size is used in an algorithm to compute where the pointer is
placed when a record number is given through the RECORD command. The side sector also
contains a table of pointers to all of the other side sectors within the file. In order to move
from one side sector to another, the pointer is referenced through the appropriate DOS
command, and the corresponding side track and sector read into memory. By using the
information contained in the referenced side sector, the data block pointer can be located
and used to read in the actual data block containing the record. The relative file data block

69

pointers in the side sectors allow the DOS to move from one record to another within two
disk read commands—a considerable savings in the amount of time required to find a de-

sired data block when compared to sequential methods.

A file may contain up to six side sectors and each side sector may contain pointers to 120
data blocks. Therefore, the largest file on the 204 Dual Drive Floppy Disk contains
182,880 bytes (120 pointers/side sector * 6 side sectors * 254 bytes/block) which happens

to be greater than the total storage capacity of that particular disk.

Table 16. RELATIVE FILE FORMAT

DATA BLOCK
BYTE DEFINITION
0,1 Track and sector of next data block.
2-256 254 bytes of data. Empty records contain FF (all binary

ones) in the first byte followed by 00 (binary all zeros) to
the end of the record. Partially filled records are padded with

nulls (00).

SIDE SECTOR BLOCK

:
|

70

BYTE DEFINITION
0,1 Track and sector of next side sector block.
2 Side sector number. (0-5)
3 Record length.
4.5 Track and sector of first side sector (number 0)
6,7 Track and sector of second side sector (number 1)
8,9 Track and sector of third side sector (number 2)
10,11 Track and sector of fourth side sector (number 3)
12,13 Track and sector of fifth side sector (number 4)
14,15 Track and sector of sixth side sector (number 5)
16-256 Track ahd sector pointers to 120 data blocks.

To expand a relative file, a programmer may reference the last record number generated
through the RECORD command and print to that particular record. The intermediate
records from the point of the current end of the file to the reference record number will be
automatically generated by the DOS. This includes any side sectors and all data blocks
necessary to contain a file, regardless of size, but within the capacity limits of the diskette.
For example, if the current size of the relative record is one data block long and the record
number referenced would expand it to 125 blocks, then an additional side sector would be

generated by the DOS since one side sector can only represent 120 data blocks.

Spanning is a key feature of relative files which aids in reducing the number of disk read/
write operations required to find and retrieve data. Before explaining how this feature of
DOS 2 and 2.5 improves time utilization efficiency, we need to examine how I/O channels
are utilized by relative files:

When a channel is opened to a previously existing file, the DOS will position to
the first record provided that the given parameters match properly. The record
length variable is not necessary on the OPEN if the file is already in existence, but
the DOS causes a check to be made against the record size that was originally
made in the DOPEN statement creating the file. If these do not match, then error
50—record not present—will be generated.

The relative channel requires three memory buffers from the system, whereas
sequential files only require two. Since there are twelve channels in the system
and two of these are used in directory searches and internal functions, only three
relative channels can be open at one time. The highest number of buffers that can
be used is ten, which limits the total number of channels which can be open at
any one time.

If arecord was found to be on the boundary between two data blocks, that is, starting in
one data block and finishing in another, then the DOS would read the first segment as well
as any following records in the second data block. In practice, the records of most relative
data files will span across data blocks. The only exceptions are record size 1, 2, 127, and
254. These divide evenly into the 254 size of the data block and spanning is unnecessary.
This method of spanning has the advantage of requiring no system memory overhead aside
from that required for the side sector blocks in the relative files. When a record is written
upon through the PRINT# statement, the data block is not immediately written out. It is
only written out when the DOS moves beyond the particular data block in which that
record resides. This can occur through successive printing to sequential records, or when
positioning to another record outside of that particular block.

Because of the spanning feature, it is recommended that two channels not be open to a rela-
tive file at the same time if either channel will be writing to the same file. An update may be
made in the channel’s particular memory buffer area, but the change may not be made on
disk until the DOS moves that particular data block. There is no restriction on this, how-
ever, and in certain instances where the file is only read from, it may be advantageous to
have more than one channel open to a single relative file.

The DOS terminates printing to a record by detecting the EQOI signal which is generated with
each PRINT# statement. If the PRINT statement goes over the maximum record size, error
51—record overflow—will be generated. Any data overflow will be truncated to fit the num-
ber of characters specified by the record size and the DOS will position to the next record in
sequence, If the print statement contains less characters than the record size, the remaining
positions within that record will be filled with nulls. Consequently, when positioning tc a
record for input the EOI signal is generated from the DOS to the computer when the last
non-zero is transmitted. Should the programmer desire to store binary information, a record
terminator such as carriage return will have to be used and the record size increased by one
character to accornmodate the terminator.

While the DOS is generating new data blocks for relative files, the requested record number
is compared to the number of data blocks left on the diskette. If the resulting number of
data blocks is greater than what is left on the diskette, then error 52—file too large—is
generated.

71

72

CREATING A RELATIVE FILE

The following examples apply only to those users equipped with both BASIC 4.0 and DOS
2. In terms of hardware, this means a 4000 or 8000 Series PET or CBM must be used as the
computer and a 4040 or 8050 for the disk drive.

When a relative file is opened for the first time, the file should be initialized by the program-
mer to allow for faster subsequent access, and to assure that the DOS reserves sufficient
space on the diskette for the future data. A simple program to perform such initialization is
illustrated below:

110 DOPEN#1,“FILE1”,D0,L50
120 GOSUB 190

130 RECORD#1,100

140 GOSUB 190

150 PRINT#1,CHR$(255);

160 GOSUB 190

170 DCLOSE#1

180 END

190 IF DS<20 THEN RETURN
200 PRINT DS$

210 IF DS=50 THEN RETURN
220 STOP

In the preceding example, line 110 creates a file with the name FILE1 and a record length
of 50.

Lines 120, 140, and 160 cause the error handling subroutine to be executed. It is good pro-
gramming practice to check the error channel after each disk-related operation.

Line 130 positions the file pointer to record number 100 which does not yet exist. The
message 50 RECORD NOT PRESENT will occur at this point, but should be interpreted as
a warning rather than an error condition. This message is normally expected to occur as a
warning when a new record is accessed for the first time and indicates that no INPUT

or GET operation should be attempted.

Line 150 causes record number 100 (because of the pointer positioned.by line 130) to be
written. During this write operation, the DOS detects that records 1 thru 99 do not already
exist, and automatically initializes them by placing CHR(255) in the first character.

Line 170 closes the file and causes the space to be allocated in the BAM and file directory.

Lines 190-220 are the error subroutine. If DS is less than 20, no error condition exists, so
line 190 would return control to the main program. Line 200 prints the error message, and
lie 210 returns to the main program if the message was 50 RECORD NOT PRESENT. If
some other unexpected error (such as a read error) occurs, line 220 will halt the program so
the user can correct the problem.

EXPANDING A RELATIVE FILE

After the file has been initialized, data may be written to the file. Initialization of a file in
this manner need be performed only once when the file is originally created. If the user
wishes to expand an existing file, the same procedure would be used, with the record num-
ber (line 130 in the example) changed to be the new last record.

The following example, when with the disk containing the file FILE1 (with 100 records)
in drive 0, will result in the first 100 records remaining unchanged and records containing
only CHR$(255) would be generated for records 101-200.

110 DOPEN#1,“FILE1”,D0,L50
120 GOSUB 190

130 RECORD#1,200

140 GOSUB 190

150 PRINT#1,CHR$(255)

160 GOSUB 190

170 DCLOSE#1

180 END

190 IF DS<20 THEN RETURN
200 PRINT DS$

210 IF DS=50 THEN RETURN
220 STOP

NOTE: When DOPEN is used on an existing file, specification of the record length is option-
al. If specified, it must match the record length set at the time the file was created or an
error condition will result.

When a file is expanded in this manner, the required side sectors are also created. Side

sectors are transparent to the user since they are automatically generated and accessed by
the DOS.

ACCESSING A RELATIVE FILE

In order to make the relative file system practical, the user must be able to access the file
for reading and writing of data. Both of these operations are simplified by relative files and
both may use the RECORD command for positioning to the desired record before the
operation.

To write data to a predetermined record in a file, a constant may be used in the positioning
(line 130) as follows:

110 DOPEN#1,“FILE1”,DO
120 GOSUB 190

130 RECORD#1,25

140 GOSUB 190

150 PRINT#1,“RECORD 25”
160 GOSUB 190

170 DCLOSE#1

180 END

190 IF DS<20 THEN RETURN
200 PRINT DS$

210 IF DS=50 THEN RETURN
220 STOP

The resulting record would appear as follows:

1 2 3 4 5
1234567890123456789012345678901234567890123456 7890

RECORD 25*

Where * represents a carriage return (CHR$(13)).

73

iy

e r e

A
Moy

prrYSsy

74

The following program illustrates the feature which permits access to individual bytes within
arecord:

110 DOPEN#1,“FILE1”,D0
120 GOSUB 900

130 RECORD#1,25,1

140 GOSUB 900

150 PRINT#1,“FIELD 1”
160 GOSUB 900

170 RECORD#1,25,10

180 GOSUB 900 |

190 PRINT#1,“FIELD 2”
200 GOSUB 900

210 RECORD#1,25,30

220 GOSUB 900

230 PRINT#1,“FIELD 3”
240 GOSUB 900

250 DCLOSE#1

260 END

900 IF DS<20 THEN RETURN
910 PRINT DS$

920 STOP

Lines 130, 170, and 210 cause the file pointer to be moved to different places within record
number 25. The following illustration is a representation of the contents of record number
25 after the above example is executed:

1 2 3 4 5
12345678901234567890123456789012345678901234567890

FIELD 1* FIELD 2* FIELD 3*

Where * represents a carriage return (CHR$(13)).

NOTE: It is important that the fields be written in sequence, since writing to a byte at the
beginning of the record destroys the rest of the record in memory. For example, this means
that while it is possible to position and write first to byte 1 and then to byte 20, it is NOT
possible to first write byte 20 and then byte 1.

Since the carriage return is recbgnized as a terminator by the BASIC INPUT statement, the
data may be retrieved by the following sequence:

110 DOPEN#1,“FILE1”,DO

120 GOSUB 290

130 RECORD#1,25

140 GOSUB 290

150 RECORD#1,25,1:GOSUB 290
160 INPUT#1,A$:GOSUB 290

170 RECORD#1,25,10:GOSUB 290
180 INPUT#1,B$:GOSUB 290

190 RECORD#1,25,30:GOSUB 290
200 INPUT#1,C$:GOSUB 290

210 DCLOSE#1

220 END

290 IF DS<20 THEN RETURN
300 PRINT DS$

320 STOP

Lines 160, 180, and 200 cause the stored values on disk to be read and stored in A$, BS,
and C$, respectively.

It is extremely useful to be able to access a record which is determined during program
operation. The following routine illustrates a procedure to query the operator for a record
number and data and to write the data to the disk file:

100 PRINT “TYPE RECORD NUMBER AND DATA”
105 INPUT R,D$

110 DOPEN#1,“FILE1”,D0
120 GOSUB 190

130 RECORD#1,(R)

140 GOSUB 190

150 PRINT#1,D$

160 GOSUB 190

170 DCLOSE#1

180 END

190 IF DS<20 THEN RETURN
200 PRINT DS$

220 STOP

Lirne 130 positions the file pointer to record number (R), specified by the user. Note that a
variable used in the RECORD command must be enclosed in parentheses.

Line 150 causes the data stored in D$ to be stored on the disk.

The RECORD command may be omitted if the file is to be accessed sequentially, which
saves time during program execution. An example of this occurs when writing a large data
base to the disk file. Assume that the program has already dimensioned D$ as an array
which contains 100 elements. These elements are to be written to the disk in records num-
ber 1 thru 100 of file FILE]. This could be accomplished with the following program
segment:

110 DOPEN#1 “FILE1”,D0
120 GOSUB 190

130 FOR I=1 TO 100

150 PRINT#1,D$(I)

160 GOSUB 190

165 NEXT I

170 DCLOSE#1

180 END

190 IF DS<20 THEN RETURN
200 PRINT DS$

220 STOP

Since the record pointer is automatically set to record 1 when the file is opened, record 1 is
the first record written. If no RECORD command is executed the DOS automatically posi-
tions to the next record after each PRINT. Therefore, the contents of D$ will be written to
records 1 thru 100 of the file. '

For detailed description of related BASIC commands, refer to chapter 4 of this manual and
the BASIC 4.0 reference manual.

75

76

NOTES

Chapter

SIMPLIFYING THE USE OF
COMMODORE DISK-

RELATED COMMANDS

It has been explained that all disk commands must be preceded with the BASIC PRINT#
command and enclosed in quotation marks. This is true, but your computer can be pro-
grammed to perform these tasks as well as how to load and run programs stored on diskette.

LOADING THE DOS SUPPORT PROGRAM

The first file on the TEST/DEMO diskette contains a program called UNIVERSAL
WEDGE, often referred to as DOS SUPPORT. This program, when loaded into memory,
takes care of the tasks mentioned above. If your computer has Commodore BASIC 4.0 you
can use the quick load procedure to load the DOS SUPPORT program. For those of you not
equipped with BASIC 4.0, the following procedure will work:

Start with a cold start condition by resetting both the computer and disk drive and insert
the TEST/DEMO disk in drive 0.

STEP 1: Type: LOAD**” 8 and press RETURN.

The screen displays:

FERDY.
LORD" ", =
SERRECHING FOR #

LOADIHG
RERDY.
i

77

78

STEP 2: Type: RUN and press RETURN.
This will cause the DOS Support program to be executed. This program will re-
locate itself into the top of the user memory, where it will coexist with programs
which are entered later. DOS support will not need to be reloaded until the com-

puter is reset. The following special symbols, once implemented, will simplify the
entry of disk commands.

USING THE DOS SUPPORT SYMBOLS: > AND e
Once DOS SUPPORT is implemented, preceding disk commands with PRINT#lfn or enclos-
ing them in quotation marks is no longer required: precede the disk command with either
the greater than symbol (>) or the at-sign (@). The examples in this manual use the >
symbol.
Examples: >I0 is the same as PRINT#1,“10”

>S80:FILE1 is the same as PRINT#15,“SO;FILE1”

The OPEN statement is NOT required before a statement.
The > symbol can also be used to load a diskette directly. Normally the directory is loaded
with LOAD*“$dr”,8 but this command destroys any program you might have in memory.
When you use the > symbol, the directory is printed directly to the screen, thus preserving
the data in the computer’s memory.
Examples: >$0 means display the entire directory of drive 0.

>$1:Q* means to display all the files on drive 1 that begin with a Q.
NOTE: To avoid scrolling the directory, press the space bar to stop the listing. To continue
the listing, press any key on the keyboard.

To stop a directory listing and return to BASIC, press RUN/STOP.

The third use of > is the request of error messages.

Example: > is equivalent to:
10 OPEN2,8,15

20 INPUT#2,A$,B$,C$,D$
30 PRINTAS$,B$,C$,D$

LOADING A PROGRAM WITH THE /

Use the slash (/) to load a program from diskette. Both diskettes are searched if the drive
number is not specified.

Example: JACCT loads the program ACCT into the computer’s memory.

LOADING AND RUNNING A PROGRAM WITH UP ARROW

The up arrow (1) loads a program from a diskette and executes it. Both diskettes are
searched if necessary.

Example: T1JDATA loads and runs the program JDATA.

SPECIAL DOS SUPPORT INFORMATION
The DOS SUPPORT program has certain limitations. These are:
1. The program must be reaccessed from the disk whenever resetting the computer.

2. DOS Support may only be used when communicating with the disk in direct mode. That
is, they may NOT be used in a program.

3. The disk directory may be printed on the printer by giving these commands:
LOAD “$07,8

OPEN 4,4:CMD4:LIST
PRINT#4:CLOSE 4

NOTES

79

NOTES

Chapter

ERROR MESSAGES—
PATTERN MATCHING

FILE NAMES—
DISK COMMANDS

REQUESTING ERROR MESSAGES: COMMODORE DISK DRIVES

The execution of the following program displays the error on the computer screen and
resets the device error indicator:

CBM Series 2001 CBM Series 8000
CBM Series 3000 CBM Series 4000
with with
BASIC 3.0 BASIC 4.0

OFEH 1.52.15
I

MFUT#1.A.B¥,C. 0
FEINT R.Ef.C.D

FEINT D=5 B

where A=error message number B$=error message C=track D=sector

SUMMARY OF CBM FLOPPY ERROR MESSAGES

0 OK, no error exists.
1 Files scratched response. Not an error condition.
2-19 Unused error messages: should be ignored.
20 Block header not found on disk.
21 Sync character not found.
22 Data block not present.
23 Checksum error in data.
24 Byte decoding error.

25 Write-verify error.
26 Attempt to write with write protect on.
27 Checksum error in header.

28 Data extends into next block.
29 Disk id mismatch.

30 General syntax error.

31 Invalid command.

32 Long line.

33 Invalid filename.

34 No file given.

39 Command file not found.
50 Record not present.

51 Overflow in record.

52 File too large. .

60 File open for write.

61 File not open.

n 62 File not found.

i 63 File exists.

- 64 File type mismatch.

65 No block.

66 Illegal track or sector.

67 Illegal system track or sector.

70 No channels available,

71 Directory error.

72 Disk full or directory full,

13 Power up message, or write attempt with DOS mismatch.

74 Drive not ready. (8050 only)

DESCRIPTION OF DOS ERROR MESSAGES

NOTE: Error message numbers less than 20 should be ignored with the exception of 01
which gives information about the number of files scratched with the SCRATCH command.

20: READ ERROR (block header not found)
The disk controller is unable to locate the header of the requested data block. Caused
by an illegal sector number, or the header has been destroyed.

21: READ ERROR (no sync character)
The disk controller is unable to detect a sync mark on the desired track. Caused by
misalignment of the read/write head, no diskette is present, or unformatted or impro-
perly seated diskette. Can also indicate a hardware failure.

82

e

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

READ ERROR (data block not present)

The disk controller has been requested to read or verify a data block that was not
properly written. This error message occurs in conjunction with the BLOCK commands
and indicates an illegal track and/or sector request.

READ ERROR (checksum error in data block)

This error message indicates that there is an error in one or more of the data bytes. The
data has been read into the DOS memory, but the checksum over the datais in error.
This message may also indicate grounding problems.

READ ERROR (byte decoding error)

The data or header has been read into the DOS memory, but a hardware error has been
created due to an invalid bit pattern in the data byte. This message may also indicate
grounding problems.

WRITE ERE.OR (write-verify error)
This message is generated if the controller detects a mismatch between the written data
and the data in the DOS memory.

WRITE PROTECT ON

This message is generated when the controller has been requested to write a data block
while the write protect switch is depressed. Typically, this is caused by using a diskette
with a write protect tab over the notch.

READ ERROR (checksum error in header)

The controller has detected an error in the header of the requested data block. The
block has not been read into the DOS memory. This message may also indicate ground-
ing problems.

WRITE ERROR (long data block)

The controller attempts to detect the sync mark of the next header after writing a data
block. If the sync mark does not appear within a pre-determined time, the error
message is generated. The error is caused by a bad diskette format (the data extends
into the next block), or by hardware failure,

DISK ID MISMATCH

This message is generated when the controller has been requested to access a diskette
which has not been initialized. The message can also occur if a diskette has a bad
header.

SYNTAX ERROR (general syntax)

The DOS cannot interpret the command sent to the command channel. Typically, this
is caused by an illegal number of file names, or patterns are illegally used. For example,
two file names may appear on the left side of the COPY command.

SYNTAX ERROR (invalid command)
The DOS does not recognize the command. The command must start in the first
position.

SYNTAX ERROR (long line)

The command sent is longer than 58 characters.

SYNTAX ERROR (invalid file name)
Pattern matching is invalidly used in the OPEN or SAVE command.

83

34:

39:

50:

51:

52:

60:

61:

62:

63:

64:

65:

66:

67:

SYNTAX ERROR (no file given)
The file name was left out of a command or the DOS does not recognize it as such.
Typically, a colon (:) has been left out of the command.

SYNTAX ERROR (invalid command)
This error may result if the command sent to command channel (secondary address
15) is unrecognizable by the DOS.

RECORD NOT PRESENT

Result of disk reading past the last record through INPUT#, or GET# commands. This
message will also occur after positioning to a record beyond end of file in a relative
file. If the intent is to expand the file by adding the new record (with a PRINT# com-
mand), the error message may be ignored. INPUT or GET should not be attempted
after this error is detected without first repositioning.

OVERFLOW IN RECORD

PRINT# statement exceeds record boundary. Information is truncated. Since the car-
riage return which is sent as a record terminator is counted in the record size, this
message will occur if the total characters in the record (including the final carriage
return) exceeds the defined size.

FILE TOO LARGE
Record position within a relative file indicates that disk overflow will result.

WRITE FILE OPEN
This message is generated when a write file that has not been closed is being opened for
reading.

FILE NOT OPEN
This message is generated when a file is being accessed that has not been opened in the
DOS. Sometimes, in this case, a message is not generated; the request is simply ignored.

FILE NOT FOUND
The requested file does not exist on the indicated drive.

FILE EXISTS
The file name of the file being created already exists on the diskette.

FILE TYPE MISMATCH
The file type does not match the file type in the directory entry for the requested file.

NO BLOCK

This message occurs in conjunction with the B-A command. It indicates that the block
to be allocated has been previously allocated. The parameters indicate the track and
sector available with the next highest number. If the parameters are zero (0), then all
blocks higher in number are in use.

ILLEGAL TRACK AND SECTOR
The DOS has attempted to access a track or sector which does not exist in the format
being used. This may indicate a problem reading the pointer to the next block.

ILLEGAL SYSTEM T OR S
This special error message indicates an illegal system track or sector.

70:

71:

72:

73:

4:

NO CHANNEL (available)

The requested channel is not available, or all channels are in use. A maximum of five
sequential files may be opened at one time to the DOS. Direct access channels may
have six opened files.

DIR9ectory) ERROR
The BAM does not match the internal count. There is a problem in the BAM allocation
or the BAM has been overwritten in DOS memory. To correct this problem, reinitialize

the diskette to restore the BAM in memory. Some active files may be terminated by
the corrective action. NOTE: BAM = Block Availability Map

DISK FULL

Either the blocks on the diskette are used or the directory is at its limit of 152 entries
for the 2040, 3040, and 4040 or 243 entries for the 8050. DISK FULL is sent when
two blocks are available on the 8050 to allow the current file to be closed.

DOS MISMATCH (73, CBM DOS V2.5 8050)

(73, CBM DOS V2) for 4040
DOS 1 and 2 are read compatible but not write compatible. Disks may be interchange-
ably read with either DOS, but a disk formatted on one version cannot be written upon
with the other version because the format is different. This error is displayed whenever
an attempt is made to write upon a disk which has been formatted in a non-
compatible format. (A utility routine is available to assist in converting from one for-
mat to another.) This message may also appear after power up.

DRIVE NCT READY
An attempt has been made to access the 8050 Dual Drive Floppy Disk without any
diskettes present in either drive.

PATTERN MATCHING

Pattern matching of file names is available on all Commodore floppys. Pattern matching uses
the question mark (?) and the asterisk (*) to perform operations on several files with simi-
lar names.

The asterisk is used at the end of a string of characters to indicate that the rest of the name
is insignificant. For example:

FIL* could refer to files named
FIL

or FILE1l

or FILEDATA

or FILLER

or any other file name starting with the letters FIL.

The question mark may be used anywhere within the string of characters to indicate that
the character in that particular position should be disregarded. For example:

7?2772.SRC could refer to files named
TSTER.SRC

or DIAGN.SRC

or PROGR.SRC

but not SRC.FILES

85

i

'

(
'

l

N
T
i

Both the characters and the position of the characters are significant.

The question mark and asterisk may be combined in many ways:

does not make sense because the question marks are in an area which is insignificant (be-
cause of the asterisk).

P??7FIL* will access files with the names
PET FILE

or PRGFILE-32

or POKEFILES$$

or any other files starting with P and having FIL in positions 5-7.

SCRATCH with pattern matching should be used carefully, since multiple files will be
scratched. LOAD or DLOAD will load the first file which fits the pattern matching. OPEN
or DOPEN with pattern matching may be used to open an existing file, in which case the
first existing file encountered which fits the description will be opened. However, OPEN or
DOPEN should not be used with pattern matching when creating a new file. Never use
RENAME, SAVE, DSAVE, or COPY for pattern matching since an error condition will
result, if attempted.

USER’S QUICK REFERENCE: DISK COMMANDS

The user’s quick reference guide will assist the user in becoming familiar with the various
commands used in both BASIC 3.0 and BASIC 4.0, and with the DOS SUPPORT utility as
well as with all Commodore disk units.

In order to make BASIC 4.0 easier to use, disk commands have been incorporated into the
language. For example, with BASIC 4.0:
e DSAVE and DLOAD commands eliminate the need to specify device number each
time you store and retrieve disk files.

e Directory display is now a one-step procedure and no longer interferes with the
program in memory.

e It is no longer necessary to write a program to read the error channel. The variable
DS$ contains the error message.

e Formatting is now a one-step procedure through the use of HEADER command.

Commands in BASIC 3.0 are upward compatible with BASIC 4.0. That is, if you are familiar
with BASIC 3.0, those commands will still work on the Series 8000 Computer furnished
with BASIC 4.0. All disk commands available on the 2040 are upward compatible with both
the 4040 and 8050.

Table 17.

User’s Quick Reference—Disk Commands

BASIC 3.0

UNIVERSAL
DOS SUPPORT

BASIC 4.0

SAVE “dr:fn”,8

SAVE‘“dr:fn” 8

DSAVE “fn”,Ddr
(drive defaults to 0)

LOAD‘“dr:fn”,8 /dr:fn DLOAD‘“fn”,Ddr
(searches both drives) (drive defaults to 0)
LOAD*“*” 8 tdr:fn DLOAD“fn”,Ddr
RUN RUN
LOAD‘‘dr:fn”,8 t* shifted RUN/STOP
LOAD‘$0”,8 >§0 DIRECTORY or
LIST DI<shifted R>

(destroys memory)

(preserves memory)

(preserves memory)

10 OPEN1,8,15
20 INPUT#1,A,B$,C,D
30 PRINT A,B$,C,D

> return

7DS$ or ?DS
(DS is number of error
only)

NOTE: Assume that OPEN1,8,15 has already been typed for all of the PRINT# com-
mands in the following formats. Commands may be spelled out or abbreviated by the first

letter as illustrated.
INITLIALIZE

PRINT#1,“Ix” >Ix PRINT#1,“Ix”
VALIDATE

PRINT#1,“Vdr> >Vdr COLLECT Ddr
SCRATCH

PRINT#1,“Sdr:fn” >dr:fn SCRATCH**fn”,Ddr
DUPLICATE

PRINT#1,“Dddr=sdr” >Dddr=sdr BACKUP Dsdr TO Dddr

PRINT#1,“Cddr=sdr”

COPY (all disk)
>Cddr=sdr

COPY Dsdr TO Dddr

PRINT#1,“Cdr:dfn=
dr:sfn”

COPY (single file)
>Cdr:dfn=dr:sfn

COPY Ddr,“sfn” TO
Ddr,“dfn”

PRINT#1,“Cdr:dfn=
dr:sfnl,dr:sfn2, . ..

CONCATENATE FILES

>Cdr:dfn=dr:sfl,
dr:sfn2, ...

CONCAT Ddr,“sfn” TO
Ddr,“dfn”

PRINT#1,“Rdr:dfn=sfn”

RENAME FILES
>Rdr:dfn=sfn”

RENAME Ddr,“sfn” TO
“dfn”

PRINT#1,Ndr:dname xx”

FORMAT A DISKETTE

>Ndr:dname,xx

HEADER ‘‘dname”,Ddr,Ixx

87

NOTES

88

Chapter

RANDOM 1.00
PROGRAM LISTING

This chapter provides a complete listing of the random access program desecribed in Chapter
6 under the heading of Random Access Example.

RER

[I SOOI (O

& FEM

18
11
12
1z
15
1&
0
21
25
s

JIR

REM
FEM

RAMDOM 1.8
SUBROUTIHES TO MANAGE FAMDOM RCCESS. FILES

REM VARIABLES ARE SET FROM DATA OF DESCRIFPTOR FILE & KEY LIST FILEZ...

FEM

.« DEFINED EY USERE PROGEAM

FEM YARIRELES SHOULD REFLECT LESIRED FILE STREUCTURE

FEM

ALL FUNCTIOMS HCT UPOM THE YARIAELES DEFIMED EELOW

FEM ¥R efannangfafentining

FEM
FOKE 1822
ME=CHRF (
Spg="

(]

B
Ci1
[N
Ii=
T=

HF=A:
CF =@

Ll OO

E=8a:

FEM TURH DS SUPPORT 2.1 OFF
iy REM FIELD MARKER

+MUREM SPACE FOR PRDDING

REM DIRECT CHAMMEL

FEM SEQUEMTIAL CHAMMEL
FEM COMMAMD CHAMMHEL
FEM CURRENT LRIVE #
REM CURREMT TRACK #
FEM CURREMT SECTOR #

REM DESCRIFTOR IRIVE #
REM EAHDOM DREIYE #

FEM RANDOM DISK ID

FEM # RECORDS IN R-FILE
REM CURRENT RECORD #

REM 15T FREE RECORD UMUSED
FREM # FIELDS IN RECORD
FEM CURREMT FIELD #

FEM # RECORIS PER EBLOCK
FEM RECORD SIZE IM BYTES
REM # BLOCKS IM R-FILE
FEM ERROR FLAG, CK =@

REM EM$,EM$,ET$.ES#$,ET.ES ERROR CHAMMEL “YARIRELES

EF=.5/255:
Fig=a
FEM FS=@:

REM INTEGER CORRECTION
REM INDEX ARRAY ADDRESSING STRATEGY
USE ARRAY IMDEX; AS=1: T&S ARE SET. CR= RECORD OFFSET IH BLOCH

FEM "R" “ARIAELES ARE TEMPORARY
DN=2:0FEMCC, DM, CC: REM DM= DEVICE WUMEER

P GOTOZ26ER
3 REM

REM START OF USER PROGRAM

89

90

AU R
N el

= n

O U S, s
A,
X

=]l ol en N Ch Lo Lo ol

Fuilbe = = e R e e e e e e e e e e e
R R I A R A DA DA DA)

L

—_

—
A

) I 1 I

=)
MR

—
ARl

-, -
) KX
B Il DRI N |

—
%

RO) I I IR

-
i

U U N R O OGN U R Y Y RS R A L]
OO T 0 L ol B s e

N,

FEM ####FEEfsEafefiEssaarees
FEM FRAHDOM FILE DIMEMSION ROUTIME
FEM 15T SET HR, HF & ME

ﬂu B1SR
IFFF":—ITHEHEETUEH

SHOMFY GREM FIELD ZIZE
WOMWFx GREM FIELD POSITION
FPZCTa= SUM [FERCI-113]

LIM FTHCMFY REM FIELD TYFE: @:EIMARY. 1:MUMERIC.

DIM FH#C(HF» :REM FIELD HERDIMG

DIM F#iHF» “REEM FIELD ARGS-ALFHA.E
SE~MUMERIC

OIM FoMF 2 ‘KEM FIELIL AR
RETURH

IFIT%=-1THEMFETUREHN

ITH=-1

nIM IT= 'HI, tREM TEACE IMIEX ARREAY
OIM 15

‘REM FEIMARY FEY “ALLE

FETHFH
R 2SR B RS2 EL LR 2L EELE
REM UFLATE RECORD. O

FEH
FFIHT#EE.“HI YDES
FRIMTHCC, "E-F:"Ca
FORCF=1TONF
GOSUESEA

HEXTLCF
FRIMTH#OC, "UZ: "CA,
GOSUER]L a6 IFETHEH
RETUEM

FEM $#E$$8EEEEfEeiereeeeses
REM RERD RECORD. CR

FEM
GOSUESE
FF: IHT#|
FPIHTM

1213

HE TFF

RETLUREHM

FEM #E3EREEEEEiEENEEEEfEeens

FEM UFDATE FIELDCCF» OF EECORL CR.
FEM

GOSUE3a4

FRIMTH#CC, UL "CE:TIGT: S

GOSLE1GEa: IFETHEMLS
FRINT#CC, "E—-F: "CELFPRICFY+RP
GOSUBSER -EEM UFDATE FIELD
FRIMTH#CC, "U2 - "CBLIDL TS
GOSUB16@E: IFETHEH1Z0G

FETURHM

FEM #E$EfEEFEEEEEEEEEERaeeErs

—
=

‘EEM SECTOR IMDEX AREAY
‘REM RELATIVE RECORD LI

o
I
~
m
XL

THARY

=T FER EEY

SIHGLE FIELD LUFDATE

FEM EERD FIELDCCF: OF FECORD CE. SINGLE FIELL RERD

FEM

GOSUBR9GR

PRIMTHCC, "IN "Ca: LTS
GOSUE1868: [FETHENL 266

PRINTRCC, "BE-F: "CBIFFEICF) +REF
GOSUBSBE REM FEEAD FIELD

FRETURM

FEM ¥E¥EEff e
FEM UFDATE FIELDCCF». E-F IS ZET

2 FEM

IFFTECCF 3 <1 THEMSEE
AF=RIGHT${SF$+STRECF(CF
AE=LEFTHCFECCF+5F¥, FSX
PRIMNTRCG, A% M.

RETURHM

CEa2

FSHCTF Y ROTOSEE

I

E08 EEM #¥#3$EEEEREsft$Eakseesers

&A1 FEM READ FIELDC(CF>, E~-F IS SET

: = KENM

S IF FTXH{ZF)> THEM&E4S

H1$=II "

FORJ=1TOFSHCCF»

GETH#CO, A% : IFA$=""THEMA$=CHE$ (&)

Al1$=R1¥+A%

HEXT :F$(CF =A1%

GETHC®, B - RETURN

IHPUTHCE, F$CCF

IFFTHICF»CH1THEM RETURHM
ALCF$CCFY Y R

REM Sffkssdsp

REM ALLOCATE OME ELOCK.

T & 5 =FEQUESTED TRACK & SECTOR

= REM
GOSUEZ9E IFETHEMLS
T15 PRIMTH#CC. "B-A:"D.T."
 INPUTHCC.EN.EM$.ET.
*S IFEM=RTHEMRETURH
IFEM<ESTHEN1 293
IFET=12THEHT=12:2=0:GOTOV15
T=ET:5=E=
H GOTOFLS
REM ¥k E¥E5EREasneaines
FEM FEEE COHE ELOCKE. T & 5 = TRACK & SECTOR
= FEM
GOSUBR2Ga: IFETHEN19B3A: REM CHECKE T &
FEIMTH#CC, "B-F "I T 5
INPUTHCC.EN.EM$.ET.ES
" IFEN=RTHEHFRETLRH
GOTO01 268
FEM SEEsfdhs ki sibseess
FEM CHECE MAX SECTOR
REM
IFT>3STHEM1 200
E=0: IFT=0THEN=42:GOTO12a¢
AZ=16: IFT>ZATHENSSG
A3=17: IFT>24THENSESG
12: IFT17FTHENSSA
Ha=2&
IFSH>AZTHEM 1 95
RETURM
FEM »+**f*¢+#*#¢+*tf«###¢*#i$

E REM CHECK T & =

Doy R

W xR]
NN e T

P IO s B]

FEM

D=RD

E=8

IFAS=—1THEMRP=CF#RSZ+1 :GOTO25E
EP=INT({CR-1)~RE+EFP} : IFRF:HE OR RPCOTHEMEN=41:GOTO12364
T=ITXCRPY :5=15H(RP
FP=IMT((CR-132/RE-RP+EF 1 #RZ#FEY+1

IFRF>234THEM EN=41:GOTO126E

368 RETURM

1908 FEM S0 RN EREAREEREEs

le@l REEM INFUT =Z84@ ERROR STATUS

1eaz FEM

1985 INFUTHCC.EM$.EM$.ET.ES

1616 EN=YAL(EM$» 1E=@

1815 IF EM#="Pa" THEN RETURM

1817 ET$=STR$(ET > :ESF=STR$(ES)

1828 IFENSORIGHTS '@ +MIDS (STRECEMD . 2, 22 THEN1G7E
1628 IF EM=1 THEM EM$= ET$+" "+EM$: RETURM

1835 E=E+!

184 EME="o"+EN$+"H “"+EMF

1859 IF EM<3@8 OF EN=€S THEM EM$=EME+" OH “"+ET$+". "+ES$
1668 RETURM

1879 EM$="g@SYSTEM NOT RESPOMDIMG FROFERLY

1020 EM$=EME+EMS+EMSHETS+ESH

1885 E=E+1

1a58 RETURN

L0 A0 R L WG L L0 MDD LG Q0 G
LT fa Py o=t = 5D 03D S LD

BSOS ND AR =SS

> REM RETURMED T & S ARE ALLOCATED “ALUES (T=12 I= SKIPFED

FEM SET RECORD S TRACK. SECTOR & RECORD FOIMTER FROM IMDES ARRAYS

91

92

)
!

FEM ##EEEEERRERERaREEERErirss

REM CREATE DESCRIFTOR FILE

F¥= FILEHAME

FEM IDF MR HF FEXC FTHC JFHEC D
FEM D= DESZCEIFTOR FILE DRIVE #
FEM FI'= EAMDOM DISK DRIVE #

FEM DREIVES MUST EE INITIARLIZED

FEM

RZ=1:D=RD

111% FORAB=1TOWF :FFZC(AEX=ES R
1116 RE=IHTC2S4 :
1126 OFEMCE, TN, CE
1121 GOsUEL2
1122 PRIMTH#COC, "B-F"CE; 1

X FORAB=1TORE: :FORAL=1TONF

FRIMTHCED. LEFTHOSPE, FSHCAL 3 ME;

- HEXTHAL. A&

HE= IHT'HF ‘RE+EF Y IFCHREARE-ME > #RE>=1THEMHE=HE+1

—

T ax) (xR n]

el oy)

o e b e e
-,

o 00T N L G

—_
—
)

=F SN AR +RE+ L HEXT | RE=RE-1

1,"#":FH'UE 1685 IFETHEN1 296

= L e s e
—_ e

7168 IFETHEH 198G
L GOSUBR4ZE HEMT

1) FFIHT#Un
G5 RE=STE$CDD+" "+ LEFTHCF$F+SPE, 183+, DESCR . UL W
B OFEMCT . IM.C1. A%
7OGOSUEIBRE: TFETHEH 1206
PRINTHCL . IDF M T ME S5,
FORAG=1TOMF - FEIMTHC1 . CHES
FORAE=ATOME-1 FRINTHCL. CHRE
Z C1CLOZECE: EETURH
LR EEE RS EER LR RS S S L ELE R
CIFEM RELATIVE FILE
IMFUT: F#$= FILEHAME
: ID= DEZCEIFTOR FILE DRIWE #
FEM FEI= EANDOM DISK DRIYE #
FEM DRIVES MUST EBE INITIALIZED
FEM
AF=STR$COD+" "+ LEF TP F+SFE, 180+ DESCRE, LLE"
DFEWCT . DH. 1. A% GOSUE1D8E : IFETHEN] 288
IHPUTHCL . IDE, T, 5

EL DM CE U HY GOSUE1EEE IFETHENL 286

"E-—ll "Eﬁ Il T.‘:.

THEXT

FEM
FEM

PRINTHCC, "E-R:";C0; RD; Ti5:B05UB1998 IFETHEN1 3
THPLITHCD, H: FFV- Lt

I:ilj F:I_IE' 1 _’_ SFTH A¥ _:l
IMPUTHC 1. FHECRE D :

FrlFHF1 HTrIHE 1:GOSURL12%3: ITHCRE=ASC A%
GO CISHCRAY=RICOAE Y CHERT

tTFETHEH 1266

RETLRM
PRINTACE, "U11 508, RD W18, @ GOSUE LTSGR TFETHEH] S8

PRIMTH#CC, "B-F:",;C8; 162

. GETHCH.AF.R1%: H$—H$+Hlf IFIDFCSASTHENEN=4% EMF="HROHG EAHD DISK": GOTO1268
1 RETLIRH

} GET#C1. A% IFA$=""THENRE=CHRE$ (@)

S RETUEH

14HH FEM #####5E0EEEREEEEeeREssvey

1441 REM CLOSE RELATIVE FILE

1482 REM IHWFUT: %ARIAELES FROM OPEW SHOULD BE WALID
146850 REM

1418 PRIWMTHOC, "E-F:-"C@:1

1428 PRIMT#CA. MR ME PR NE, NE: MERS; MEREA$; HF NS
1438 PRINTHCC. "B-M:"CRGDIFTHCR FINAN

1448 CLOSECH

143L FETLFRH

13 E=E+1 :RETUREH

[¥e]
=
L]

THFUT " Iae0 Y'0U WMISH TO CREATE A FILE HIREE A% : IFLEFT#CAF, 1 2C:"Y " THEMZ 195
IHFUT " BRAMDOM FILE HAME" :F#
+ IMFUT"KEY FILE DRIVE HUMEEE"; DD
< IMFUT"RAMDOM FILE LREIVE HUMEER":RD
IHPUT"EHMTER ID OF EAWDOM DISK _ IR ; ID: IDg=LEFTHIDF. 20
> IMPUT"HUMEER OF RECORDS"ME
7 IMPUT"HLMEER OF FIELDS FER RECORD™:HF
GOSUELLR
Z PRINT"® IMFUT FIELD MAME.FIELDY SIZE.FIELD TYFE"
= FEIHT" TYPES: @=EIMAREY., 1=HUIMERIL, Z=ALFPHAR"
o RE=A
FORI=1TOMF - FRIMT"FIELD" : I, : IMPUTFHECI 2 FERCTI 3, FTHCI 2 RES=FSH I 0 4RS+1 - HEXT
RFE="1": IFDD=RDTHEHAF="1"+STE+ID>
PEIHTHCC A
hU-UEllnF'IFETHEH:_~~
OPEH4Y . SETREFCDD+" M +LEFTH#CF$+5PF, 180+ EEYAL . UL WY
FFIHT#4 9 ME: CLOSES
A GOTOZ12A
A REM OFEM EAMDVOM FILE FOR ACCESS
< IMPUT "BRAMHDOM FILE HAME".F#
IMFUT"KEY FILE DRIVE HUMEBER" DD
IMFUT "REAHDOM FILE DRIVE MUMBER":ED
GOSUE 1 2@ IFETHEMZ 003
OFEHS . 2, 4, STREFDO»+" : "+LEFT#CF$4+5FF, 100+ KEY1 . U"
* IMFLUTH#4,.RE: IFRRE=ETHEHZ147
45 FORI=1TORR: IMFUTH#4, E1$CI 2, BREECT 5 - HEST
° CLOSES
FRINT "TISpEErErERRRERRRIZAMFLE FAHDOM ACCES!
55 PEIMT"TYFE - TO QUITH"
. PREIMT"¢HIT RETURH TO ARDD RECORDX"
FREINT " aHOZE RECORD Do YOL™
IMPUT"WISH TO SEE 1] | [
IFRR$=" "THENWZ31&
v IFRRE="S/"THEHZ4R0
¢ IFREF="/TIR" THEHGOSUEB4®AR : GOTOZ 168
FORII=1TORE: IFK1FC I I a<RREFTHEHNERT GOTOZ 360
CR=RR:¢II 2 GOSUBZOE
FORI=1TONF - FRINTI "2 "FHFCI " " FEC T3 HEXT (FRINT
FF=#
ITHPUT "AHY MOLS T A4 IFLEFTHCAS, 1"y THENZZZG
IMPUT"WHICH FIELD":A
PRIMT" "FHOAPRIMTOTT: IMPUTFSCRY (FCAY=VRUCFFCAY D
FF=1:5E0TO2124
IFFF=RTHEHZ1£
IFA=1THEHK 1 F1
huJHP;nu
GOTOS
FFIHT“!PEEDFD HOT FREESEWT"
HS THPUT DO Y00 WISH TO ADDY:A%: IFLEFTH#CAS, 12" Y " THEHZ 164G
18 FPRIMT"Mes$# ADD RECORD #¥+pm"
12 IFFRMRETHEHZSEHE
CR=FR :FR=FR+1:ER=EE+1
FORI=1TONF PRINTFHFCI 2 c INPUTFSC Iy P T o=YALCFFCT 2 0t NERT
SGOSUEZEa
Fi1%iRR
GOTOZ1el
FEM ILDEE FAMHD FILE
GOSUE 148
3 OPEM4. 2,4, "2 +STREFCOD+": "+LEFTHCF$+5PF, 100+ L KEYAL UL K"
UUUHEIHE IFETHEH_BUB
3 PRINT#4.ER. M
H FORI=1TORE: PFIHT#4 E1CI o ME REHNCT 2 ME: CNEXT
UUJHEIQB@ IFETHEHZ32&

-I- |

"]I]

LU
l_l 1

5]
I1y=F%CAY

F$i1):RRECRRI=CR

GOSUB18a4: IFETHEHZ2G2

23 FOKE182Z, 2:END:REM TURH DOS SUPFORT 3.1 OH

A3 PRIMT"THE FILE IS FULL. MO ADDITIOMAL RECORDS MAY BE ADDED™
GOTO21E0

FRIMTE. EM$: STOF

FORDI=0TOMHR : FRINTE1£cDT MEXT : EETURH

93

NOTES

3

AC power cord, 3
Advanced disk programming, 47
Advanced file handling, 65
At symbol (see DOS Support)
BACKUP (BASIC 4.0 direct command), 29
BAM, 22, 47
Format
2040, 3040, 55
4040, 56
8050, 58
Memory requirements, 22
BASIC commands
CLOSE command, 39
DCLOSE command, 40
DLOAD command, 36
DOPEN command, 39
DSAVE command, 36
GET# command, 43
INPUT# command, 42
LOAD command, 36
OPEN command, 38
PRINT# command, 41
RECORD# command, 43
SAVE command, 36
VERIFY command, 37
BASIC commands, disk drive, 35
BASIC 4.0 direct commands
BACKUP command, 29
COLLECT command, 28
CONCAT commarnd, 31
COPY command, 31
RENAME command, 32
SCRATCH command, 33

Chapte

10

INDEX

Block availability map, 22
Block distribution, by track, 54
BLOCK-ALLOCATE command, 51
BLOCK-EXECUTE command, 50
BLOCK-READ command, 49
BLOCK-WRITE command, 50
Block pointer, 26
Buffer number, 65
BUFFER-POINTER command, 50
Business keyboard, 14,17
Bus, IEEE, 12
Cables, 11
PET to IEEE, 11
IEEE to IEEE, 11,
CHRS$ function, 41, 42, 48, 49, 51, 52
CLOSE command, 39
Closing the command channel, 40
Closing the data channel, 41
COLLECT (BASIC 4.0 direct command), 28
Command channel, 40
Compatability
BASIC versions, 35
Disk drives with computers, 3
Series 2001, 3
Series 3000, 3
Series 8000, 3
DOS versions, 69
CONCAT (BASIC 4.0 direct command), 31
COPY (BASIC 4.0 direct command), 31
COPY command, 31
Data blocks, 69
Data channel
Closing, 41

95

Data file
Concatenation, 29, 30
Copying, 29
Renaming, 31
Data handling, 35
BASIC commands for, 35
DCLOSE command, 40
DEMO diskette (see TEST/DEMO diskette)
Description of DOS error messages, 81
Descriptor (.DESC), 66
Device number, 35
Diagnostic boot, 18
Direct access, 65
Special OPEN and CLOSE statements,
65
Directory, 26
Loading, 26
Printing, 27
DIRECTORY (BASIC 4.0 direct
command), 27
Directory format, 60
Directory header
2040, 3040, 55
4040, 56
Directory header block, 8050, 57
Diskettes
Care of, 9
Inserting diskettes
2040, 3040, 4040, 13
8050, 13
Disk maintenance commands, 23
BACKUP (BASIC 4.0 direct command),
29
COLLECT (BASIC 4.0 direct command),
28
COPY (BASIC 4.0 direct command), 31
COPY command, 29
CONCAT (BASIC 4.0 direct command),
31
DIRECTORY (BASIC 4.0 direct com-
mand, 27
DUPLICATE command, 28
Limitations due to formats, 28
HEADER (BASIC 4.0 direct command),
25
NEW command, 24
VALIDATE command, 28
RENAME (BASIC 4.0 direct command),
32
RENAME command, 31
SCRATCH (BASIC 4.0 direct com-
mand), 33
SCRATCH command, 32
Disk maintenance commands
Diskette level, 23
File level, 23

Disk operating system, 15, 18, 22, 25, 47,
59,69, 70, 71, 72, 77
Disk programming, advanced, 47
Disk utility command set, 48
BLOCK-READ, 48, 50
BLOCK-WRITE, 48, 50
BLOCK-EXECUTE, 48, 50
BUFFER-POINTER, 48, 50
BLOCK-ALLOCATE, 48, 51
MEMORY, 51
Memory-Write, 48, 51
Memory-Read, 48, 52
Memory-Execute, 48, 52
USER, 48, 52
Disk zones, 59
DLOAD command, 36
DOPEN command, 39
DOS, 15, 18, 22, 25, 47, 59, 69, 70, 71,
72,77
DOS support, 22, 77
Loading DOS support, 15, 18, 77
Loading a program, 14,17, 78
Loading and running a program, 15, 18, 78
Special DOS support, 79
Using DOS symbols > and @, 78
Limitations, 79
Disk backup, 15, 18, 66
Disk drive
Care of, 9
Description, 3
Front panel, 3
Back panel, 3
. Interior configuration, 4
Connecting to computer, 11
Power-on test, 12
Performance tests, 14, 17
Specifications, disk drives, 5, 6, 7, 8
Unpacking, 9
Disk ID, 24, 25, 26
DSAVE command, 35
EOQI signal, 71
Error messages, 81
Description of DOS error messages, 82
Requesting error messages, 81
Summary of error messages, 82
Expanded view, single sector
2040 format, 62
8050 format, 63
Field fitting, 66
File format, program, 61
File handling. advanced, 65
File pointer, 43
Floppy disk hookup, 11
Format
BAM
2040, 3040, 55

4040, 56
8050, 57
Directory, 60
2040, 3040, 55
4040, 56
8050, 57
Formatting, 24, 25
GET# command, 41
HEADER (BASIC 4.0 direct command), 25
High byte, 48, 51
Hookup, floppy disk, 11
ID, 24, 25, 26
IEEE488 interface, 4, 11,47
Indicator lights (see LED indicator lights)
INPUT# command, 42
I/G channels, 22, 47, 71
Inserting diskettes
2040, 3040, 4040, 13
8050, 13
Initialization
2040 and 3040, 25
4040, 26
8050, 26
Job queue, 47
Key file, primary (see primary key file)
LED (light emitting diode; see LED
indicator lights)
LED indicator lights, 3,12, 18, 81
Limitations, DUPLICATE command, 28
Line feed, suppression of, 41
LOADS$ command, 26
Loading
DOS support, 77
a program with a slash (/) symbol, 78
and running a program with up arrow
(1) symbol, 79
Low byte, 48, 51
Magnetic fields, 9
Maintenance commands, disk, 23
MEMORY commands, 51
MEMORY-WRITE command, 51
MEMORY-READ command, 52
MEMORY-EXECUTE command, 52
OPEN command, 38
Operating system, disk, 15, 18, 22, 25, 47,
59,69, 70,71, 72, 77
Parameters, 48, 49
Parms, 48
Pattern matching, 85
Performance test
4040/8050, 14
2040/3040, 17
POKE command, 14,17
Pointer, block, 26
PRG file, 36, 61

Primary key file (KEY0Q1), 66
PRINT# command, 41
Program file, 61
Program file format, 61
Quickload feature, 44
Quick reference: commands, 86
Random access
Add arecord, 67
Change a record, 68
Create a file, 66
Ending the program, 69
Example, 66
Field markers, 66
Field size, 66
Restrictions, 66
Getting directory of listings, 69
Primary file names, 66
Primary key file, 66
Record size, 66
See a record, 68
Reading list, 4
RECORD# command, 43
Record pointer, 43
Relative files, 69
4040, 8050, 69
Accessing, 73
Block pointers, 70
Channel restrictions, 71
Creating, 72
DOS compatability, 69
Expanding a file, 7
Format, 70
Main components, 69
Record size, 69
Side sectors, 69
Side tracks, 69
Storage capacity, 70
RENAME (BASIC 4.0 direct command),
32
RENAME command, 32
Requesting error messages, 81
Safety feature, HEADER command, 25
SAVE command, 36
SCRATCH (BASIC 4.0 direct command),
33
SCRATCH command, 33
Screen displays, actual, 14, 15, 16, 17, 18,
19, 26, 37,40, 44,45, 77, 81
Secondary address, 35, 38, 42, 47, 50
Sector, single: expanded view, 70
Sequential format, 61
Side sectors, 69
Side track, 69
Simplifying commands, 77
Single record access, 65

97

Single sector, expanded view, 70
Slash (/) symbol (see DOS support)
Spanning, 71
Specifications
8050, 6
2040/3040, 7
4040, 8
Standard jump table, 53
Summary
‘BASIC commands, data handling, 35
Disk commands, 86
Disk maintenance commands, 23
Disk utility commands, 48
Error messages, 81
Suppression of line feeds, 41

98

Symbols, DOS support, 78

Tab, write protect, 13

Tape to disk, 45

TEST/DEMO diskettes, 9, 14, 17, 23
Ul command, 52

U2 command, 52

Universal wedge, 23, 77

Up arrow (1) symbol (see DOS support)
USER command, 52

User’s quick reference: disk commands, 86
Utility commands, disk, 48
VALIDATE command, 28

VERIFY command, 37

Wedge (>) symbol (see DOS support)
Write protect tab, 13

(= commodore \

Commodore Business Machines, Inc.
3330 Scott Boulevard
Santa Clara, California 95051

