Search Results

Keyword: ‘CBM 610’

Commodore-MOS KIM-1

December 19th, 2015 1 comment

The KIM-1, short for Keyboard Input Monitor, was a small 6502-based single-board computer developed and produced by MOS Technology, Inc. and launched in 1976. It was very successful in that period, due to its low price (following from the inexpensive 6502) and easy-access expandability.

The KIM-1 consisted of a single printed circuit board with all the components on one side. It included three main ICs; the MCS6502 CPU, and two MCS6530 Peripheral Interface/Memory Devices. Each MCS6530 comprises a mask programmable 1024 x 8 ROM, a 64 x 8 RAM, two 8 bit bi-directional ports, and a programmable interval timer. The KIM-1 brochure said “1 K BYTE RAM” but it actually had 1152 bytes. The memory was composed of eight 6102 static RAMs(1024 x 1 bits) and the two 64 byte RAMs of the MCS6530s. In the 1970s memory sizes were expressed in several ways. Semiconductor manufacturers would use a precise memory size such as 2048 by 8 and sometimes state the number of bits (16384). Mini and mainframe computers had various memory widths (8 bits to over 36 bits) so manufacturers would use the term “words”, such as 4K words. The early hobbyist computer advertisements would use both “words” and “bytes”. It was common to see “4096 words”, “4K (4096) words” and “4 K bytes”. The term KB was unused or very uncommon. The KIM-1 was introduced in the April 1976 issue of Byte magazine and the advertisement stated “1 K BYTE RAM” and “2048 ROM BYTES”.

Also included were six 7-segment LEDs (similar to those on a pocket calculator) and a 24-key calculator-type keypad. Many of the pins of the I/O portions of the 6530s were connected to two connectors on the edge of the board, where they could be used as a serial system for driving a Teletype Model 33 ASR and paper tape reader/punch).

One of these connectors also doubled as the power supply connector, and included analog lines that could be attached to a cassette tape recorder.

Earlier microcomputer systems such as the MITS Altair used a series of switches on the front of the machine to enter data. In order to do anything useful, the user had to enter a small program known as the “bootstrap loader” into the machine using these switches, a process known as booting. Once loaded, the loader would be used to load a larger program off a storage device like a paper tape reader. It would often take upwards of five minutes to load the tiny program into memory, and a single error while flipping the switches meant that the bootstrap loader would crash the machine. This could render some of the bootstrap code garbled, in which case the programmer had to reenter the whole thing and start all over again.

The KIM-1 included a somewhat more complex built-in Terminal Interface Monitor software called TIM that was “contained in 2048 bytes of ROM in two 6530 ROM/RAM/IO arrays”. This monitor software included the ability to run a cassette tape for storage, drive the LED display, and run the keypad. As soon as the power was turned on, the monitor would run and the user could immediately start interacting with the machine via the keypad. The KIM-1 was one of the first single-board computers, needing only an external power supply to enable its use as a stand-alone experimental computer. This fact, plus the relatively low cost of getting started, made it quite popular with hobbyists through the late 1970s.

Gallery:

Download: Commodore-MOS KIM-1 Docs (1096)

 source: wikipedia

Repairing a Commodore CBM 610

October 26th, 2013 2 comments
Components replaced

This gallery shows some stages of repairing the Commodore CBM 610.

Defects found on the Commodore CBM 610:

  • Random raster lines on the screen.

Components replaced:

  • 2 x 74LS245
  • 1 x 74S32
  • 1 x 74S05
  • 1 X 74LS14
  • 2 x Capacitor 22uf 10v
  • 2 x Capacitor 1uf 50v

I have passed three weeks of suffering for repairing this CBM 610. The finding of the fault is not has been easy, the key component of the failure was the IC 74S05 (U96) followed by the other components.

Repairing & Cleaning a Commodore CBM 610

September 29th, 2013 No comments
Characters rom & CPU 6509A

This gallery shows some stages of the cleaning and repairing the Commodore CBM 610.

Defects found on the Commodore CBM 610:

  • Black Screen of Death.
  • Garbage characters on the screen.
  • Keyboard Yellowed.
  • Filter capacitor exploded.

The black screen of death was fixed by replacing the CPU MOS 6509A and the problem of garbage characters on the screen was fixed by replacing the ROM characters with a EPROM 2532 suitably programmed.

The yellowed keyboard was replaced with a new one in good condition of the Commodore CBM 710. I like Commodore. What will be the difference of a CBM 710 and a CBM 610 keyboard? nothing, are the same! no! on the keyboard of the CBM 710 has two wires reversed! (brown/red) ;-D

The filter capacitor exploded has been removed.

Commodore CBM 610

September 29th, 2013 No comments

Commodore CBM 610

Autopsy:

from Wikipedia:

The Commodore CBM-II series was a short-lived range of 8-bit personal computers from Commodore Business Machines (CBM), released in 1982 and intended as a follow-on to the Commodore PET series.

The CBM-II had two incarnations, the P series (P = personal, or, home use) and the B series (B = business use). The B series was available with a built-in monochrome monitor (hi-profile) with detached keyboard, and also as a single unit with built-in keyboard but no monitor (lo-profile). These machines were known as the “Porsche PETs” for their unique styling.

The P series used the VIC-II 40-column color video chip like the C64. It also included two standard Atari-style joystick ports. The 6509 CPU ran at 1 MHz in the P series due to the use of the VIC-II chip.

The B series used a 6545 CRTC video chip to give an 80-column “green screen” monochrome output more suitable for word processing and other business use than the VIC-II’s 40-column display. Most models have the Motorola 68B45 installed which is a pin compatible variant rather than the MOS 6545A1 2 MHz part. On the B series the 6509 CPU ran at 2 MHz.

Features common to both the P and B series included an MOS Technology 6509 CPU, an enhanced version of the venerable 6502, that was capable of addressing up to 1 megabyte of RAM via bank switching (however, no CBM-II model came with more than 256 kilobytes of RAM, 1/4 megabyte). The sound chip was the 6581 SID, the same one that was used in the popular Commodore 64 (C64) but with some limitations as it was over-clocked to 2 MHz. Additionally, the CBM-II had an industry-standard RS-232 serial interface and an IEEE-488 parallel bus (for use by disk drives and printers) just like the PET/CBM series. The CBM-II’s built-in operating system used an enhanced version of CBM BASIC version 4.0.

An optional Intel 8088-based coprocessor board allowed the CBM-II series to run CP/M-86 1.1 and MS-DOS 1.25; however, the computers were not IBM PC compatible and very little, if any, software taking advantage of this capability ever appeared. The coprocessor board only ran on hi-profile machines due to power supply and mechanical spacing requirements.

The production naming within the United States and Canada was the B128/B256 and CBM128-80/CBM 256-80 while in Europe they were known as the 600 and 700 series respectively (no “B” in front of the model number). The P machine was known worldwide as the 500 series. There are prototype models though such as the B500 (earlier B128 design) and B700 (earlier CBM 128-80/CBM 256-80 design) known to exist.

Due to the popularity of the C64, the P series was cancelled in the United States before it could be officially released; however, a few dealers who received preproduction units sold them. As these computers had not received approval from the Federal Communications Commission, this caused legal problems for Commodore. The units were recalled and destroyed, but a very small number exist today, in private collections. At least one model, the P500, was commercially released in Europe but only sold in small numbers.

source: wikipedia

Analysis & Repair of two Floppy Drives Commodore SFD-1001

September 27th, 2013 4 comments
Floppy Drives Commodore SFD-1001

This gallery shows some stages of the repairing of the two Floppy Drives Commodore SFD-1001.

Defects found on the two Floppy Drives:

  • Both floppy drives had the capacitors that leaked acid on the motor control pcb.
  • Both floppy drives had the closing arm cracked.

The difficulty was rebuild the tracks of the pcb and remove the most of the leaked acid of the capacitors. Unfortunately on the aesthetic level this type of repair are not perfect, but i’m glad that now work.

To test the correct operation of the Floppy Drives i have used a Commodore CBM (PET) 2001, and a Commodore CBM 610.

petSD: A cards storage for Commodore with IEEE 488 bus

June 10th, 2011 No comments

petSD is the name of the new AVR-based hardware. It’s a modern mass storage solution for Commodore PET/CBM computers with IEEE 488 bus using SD cards as floppy or hard disc replacement.

If you know the SD2IEC or µIEC: the petSD is just the same but for the older parallel IEEE 488 bus instead of the newer serial IEC bus.

The petSD is still a work in progress and there still are some issues.

A petSD consists of at least:

  • ATmega 1284P.
  • Red and a green LED (may be combined in one).
  • SD slot.
  • IEEE 488 connector.

source: nils eilers homepage

Categories: Hardware, News & Rumors, Today